Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Tumor-derived fibulin-3 activates pro-invasive NF-κB signaling in glioblastoma cells and their microenvironment

Subjects

Abstract

Molecular profiling of glioblastomas has revealed the presence of key signaling hubs that contribute to tumor progression and acquisition of resistance. One of these main signaling mechanisms is the nuclear factor-kappa B (NF-κB) pathway, which integrates multiple extracellular signals into transcriptional programs for tumor growth, invasion and maintenance of the tumor-initiating population. We show here that an extracellular protein released by glioblastoma cells, fibulin-3, drives oncogenic NF-κB in the tumor and increases NF-κB activation in peritumoral astrocytes. Fibulin-3 expression correlates with a NF-κB-regulated ‘invasive signature’ linked to poorer survival, being a possible tissue marker for regions of active tumor progression. Accordingly, fibulin-3 promotes glioblastoma invasion in a manner that requires NF-κB activation both in the tumor cells and their microenvironment. Mechanistically, we found that fibulin-3 activates the metalloprotease ADAM17 by competing with its endogenous inhibitor, TIMP3. This results in sustained release of soluble tumor necrosis factor alpha (TNFα) by ADAM17, which in turn activates TNF receptors and canonical NF-κB signaling. Taken together, our results underscore fibulin-3 as a novel extracellular signal with strong activating effect on NF-κB in malignant gliomas. Because fibulin-3 is produced de novo in these tumors and is absent from the normal brain, we propose that targeting the fibulin-3/NF-κB axis may provide a novel avenue to disrupt oncogenic NF-κB signaling in combination therapies for malignant brain tumors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Zong H, Verhaak RG, Canoll P . The cellular origin for malignant glioma and prospects for clinical advancements. Expert Rev Mol Diagn 2012; 12: 383–394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Watkins S, Sontheimer H . Unique biology of gliomas: challenges and opportunities. Trends Neurosci 2012; 35: 546–556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wen PY, Kesari S . Malignant gliomas in adults. N Engl J Med 2008; 359: 492–507.

    Article  CAS  PubMed  Google Scholar 

  4. Ostrom QT, Gittleman H, Liao P, Rouse C, Chen Y, Dowling J et al. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2007-2011. Neuro Oncol 2014; 16 (Suppl 4): iv1–63.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Chen J, McKay RM, Parada LF . Malignant glioma: lessons from genomics, mouse models, and stem cells. Cell 2012; 149: 36–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Brennan CW, Verhaak RG, McKenna A, Campos B, Noushmehr H, Salama SR et al. The somatic genomic landscape of glioblastoma. Cell 2013; 155: 462–477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 2010; 17: 98–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Carro MS, Lim WK, Alvarez MJ, Bollo RJ, Zhao X, Snyder EY et al. The transcriptional network for mesenchymal transformation of brain tumours. Nature 2010; 463: 318–325.

    Article  CAS  PubMed  Google Scholar 

  9. Oeckinghaus A, Hayden MS, Ghosh S . Crosstalk in NF-κB signaling pathways. Nat Immunol 2011; 12: 695–708.

    Article  CAS  PubMed  Google Scholar 

  10. Korkolopoulou P, Levidou G, Saetta AA, El-Habr E, Eftichiadis C, Demenagas P et al. Expression of nuclear factor-κB in human astrocytomas: relation to pI κBa, vascular endothelial growth factor, Cox-2, microvascular characteristics, and survival. Hum Pathol 2008; 39: 1143–1152.

    Article  CAS  PubMed  Google Scholar 

  11. Puliyappadamba VT, Hatanpaa KJ, Chakraborty S, Habib AA . The role of NF-κB in the pathogenesis of glioma. Mol Cell Oncol 2014; 1: e963478.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bhat KP, Balasubramaniyan V, Vaillant B, Ezhilarasan R, Hummelink K, Hollingsworth F et al. Mesenchymal differentiation mediated by NF-κB promotes radiation resistance in glioblastoma. Cancer Cell 2013; 24: 331–346.

    Article  CAS  PubMed  Google Scholar 

  13. Wang H, Zhang W, Huang HJ, Liao WS, Fuller GN . Analysis of the activation status of Akt, NF-κB, and Stat3 in human diffuse gliomas. Lab Invest 2004; 84: 941–951.

    Article  CAS  PubMed  Google Scholar 

  14. Robe PA, Bentires-Alj M, Bonif M, Rogister B, Deprez M, Haddada H et al. in vitro and in vivo activity of the nuclear factor-κB inhibitor sulfasalazine in human glioblastomas. Clin Cancer Res 2004; 10: 5595–5603.

    Article  CAS  PubMed  Google Scholar 

  15. Kusne Y, Carrera-Silva EA, Perry AS, Rushing EJ, Mandell EK, Dietrich JD et al. Targeting aPKC disables oncogenic signaling by both the EGFR and the proinflammatory cytokine TNFalpha in glioblastoma. Science signaling 2014; 7: ra75.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hu B, Thirtamara-Rajamani KK, Sim H, Viapiano MS . Fibulin-3 Is Uniquely Upregulated in Malignant Gliomas and Promotes Tumor Cell Motility and Invasion. Mol Cancer Res 2009; 7: 1756–1770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hu B, Nandhu MS, Sim H, Agudelo-Garcia PA, Saldivar JC, Dolan CE et al. Fibulin-3 promotes glioma growth and resistance through a novel paracrine regulation of Notch signaling. Cancer Res 2012; 72: 3873–3885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nandhu MS, Hu B, Cole SE, Erdreich-Epstein A, Rodriguez-Gil DJ, Viapiano MS . Novel paracrine modulation of Notch-DLL4 signaling by fibulin-3 promotes angiogenesis in high-grade gliomas. Cancer Res 2014; 74: 5435–5448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hiddingh L, Tannous BA, Teng J, Tops B, Jeuken J, Hulleman E et al. EFEMP1 induces gamma-secretase/Notch-mediated temozolomide resistance in glioblastoma. Oncotarget 2014; 5: 363–374.

    Article  PubMed  Google Scholar 

  20. Brat DJ, Castellano-Sanchez AA, Hunter SB, Pecot M, Cohen C, Hammond EH et al. Pseudopalisades in glioblastoma are hypoxic, express extracellular matrix proteases, and are formed by an actively migrating cell population. Cancer Res 2004; 64: 920–927.

    Article  CAS  PubMed  Google Scholar 

  21. Ohnishi T, Matsumura H, Izumoto S, Hiraga S, Hayakawa T . A novel model of glioma cell invasion using organotypic brain slice culture. Cancer Res 1998; 58: 2935–2940.

    CAS  PubMed  Google Scholar 

  22. Natarajan K, Singh S, Burke TR Jr., Grunberger D, Aggarwal BB . Caffeic acid phenethyl ester is a potent and specific inhibitor of activation of nuclear transcription factor NF-κB. Proc Natl Acad Sci USA 1996; 93: 9090–9095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Alcamo E, Mizgerd JP, Horwitz BH, Bronson R, Beg AA, Scott M et al. Targeted mutation of TNF receptor I rescues the RelA-deficient mouse and reveals a critical role for NF-κB in leukocyte recruitment. J Immunol 2001; 167: 1592–1600.

    Article  CAS  PubMed  Google Scholar 

  24. Espinosa L, Cathelin S, D'Altri T, Trimarchi T, Statnikov A, Guiu J et al. The Notch/Hes1 pathway sustains NF-κB activation through CYLD repression in T cell leukemia. Cancer Cell 2010; 18: 268–281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mathis BJ, Lai Y, Qu C, Janicki JS, Cui T . CYLD-mediated signaling and diseases. Curr Drug Targets 2015; 16: 284–294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bozkulak EC, Weinmaster G . Selective use of ADAM10 and ADAM17 in activation of Notch1 signaling. Mol Cell Biol 2009; 29: 5679–5695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rose-John S . ADAM17, shedding, TACE as therapeutic targets. Pharmacol Res 2013; 71: 19–22.

    Article  CAS  PubMed  Google Scholar 

  28. Amour A, Slocombe PM, Webster A, Butler M, Knight CG, Smith BJ et al. TNF-alpha converting enzyme (TACE) is inhibited by TIMP-3. FEBS Lett 1998; 435: 39–44.

    Article  CAS  PubMed  Google Scholar 

  29. Klenotic PA, Munier FL, Marmorstein LY, nand-Apte B . Tissue inhibitor of metalloproteinases-3 (TIMP-3) is a binding partner of epithelial growth factor-containing fibulin-like extracellular matrix protein 1 (EFEMP1). Implications for macular degenerations. J Biol Chem 2004; 279: 30469–30473.

    Article  CAS  PubMed  Google Scholar 

  30. Baltimore D . NF-κB is 25. Nat Immunol 2011; 12: 683–685.

    Article  CAS  PubMed  Google Scholar 

  31. DiDonato JA, Mercurio F, Karin M . NF-κB and the link between inflammation and cancer. Immunol Rev 2012; 246: 379–400.

    Article  PubMed  Google Scholar 

  32. Gray GK, McFarland BC, Nozell SE, Benveniste EN . NF-κB and STAT3 in glioblastoma: therapeutic targets coming of age. Expert Rev Neurother 2014; 14: 1293–1306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nogueira L, Ruiz-Ontanon P, Vazquez-Barquero A, Moris F, Fernandez-Luna JL . The NF-κB pathway: a therapeutic target in glioblastoma. Oncotarget 2011; 2: 646–653.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Westhoff MA, Zhou S, Nonnenmacher L, Karpel-Massler G, Jennewein C, Schneider M et al. Inhibition of NF-κB signaling ablates the invasive phenotype of glioblastoma. Mol Cancer Res 2013; 11: 1611–1623.

    Article  CAS  PubMed  Google Scholar 

  35. Bonavia R, Inda MM, Vandenberg S, Cheng SY, Nagane M, Hadwiger P et al. EGFRvIII promotes glioma angiogenesis and growth through the NF-κB, interleukin-8 pathway. Oncogene 2012; 31: 4054–4066.

    Article  CAS  PubMed  Google Scholar 

  36. Kim JK, Jin X, Sohn YW, Jin X, Jeon HY, Kim EJ et al. Tumoral RANKL activates astrocytes that promote glioma cell invasion through cytokine signaling. Cancer Lett 2014; 353: 194–200.

    Article  CAS  PubMed  Google Scholar 

  37. Ellert-Miklaszewska A, Dabrowski M, Lipko M, Sliwa M, Maleszewska M, Kaminska B . Molecular definition of the pro-tumorigenic phenotype of glioma-activated microglia. Glia 2013; 61: 1178–1190.

    Article  PubMed  Google Scholar 

  38. Kim YJ, Hwang SY, Han IO . Insoluble matrix components of glioma cells suppress LPS-mediated iNOS/NO induction in microglia. Biochem Biophys Res Commun 2006; 347: 731–738.

    Article  CAS  PubMed  Google Scholar 

  39. Conti A, Guli C, La Torre D, Tomasello C, Angileri FF, Aguennouz M . Role of inflammation and oxidative stress mediators in gliomas. Cancers (Basel) 2010; 2: 693–712.

    Article  CAS  Google Scholar 

  40. Bredel M, Scholtens DM, Yadav AK, Alvarez AA, Renfrow JJ, Chandler JP et al. NFKBIA deletion in glioblastomas. N Engl J Med 2011; 364: 627–637.

    Article  CAS  PubMed  Google Scholar 

  41. Kobayashi N, Kostka G, Garbe JH, Keene DR, Bachinger HP, Hanisch FG et al. A comparative analysis of the fibulin protein family. Biochemical characterization, binding interactions, and tissue localization. J Biol Chem 2007; 282: 11805–11816.

    Article  CAS  PubMed  Google Scholar 

  42. Argraves WS, Greene LM, Cooley MA, Gallagher WM . Fibulins: physiological and disease perspectives. EMBO Rep 2003; 4: 1127–1131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. de Vega S, Iwamoto T, Yamada Y . Fibulins: multiple roles in matrix structures and tissue functions. Cell Mol Life Sci 2009; 66: 1890–1902.

    Article  CAS  PubMed  Google Scholar 

  44. Obaya AJ, Rua S, Moncada-Pazos A, Cal S . The dual role of fibulins in tumorigenesis. Cancer Lett 2012; 325: 132–138.

    Article  CAS  PubMed  Google Scholar 

  45. Seeliger H, Camaj P, Ischenko I, Kleespies A, De Toni EN, Thieme SE et al. EFEMP1 expression promotes in vivo tumor growth in human pancreatic adenocarcinoma. Mol Cancer Res 2009; 7: 189–198.

    Article  CAS  PubMed  Google Scholar 

  46. En-lin S, Sheng-guo C, Hua-qiao W . The expression of EFEMP1 in cervical carcinoma and its relationship with prognosis. Gynecol Oncol 2010; 117: 417–422.

    Article  PubMed  Google Scholar 

  47. Song EL, Hou YP, Yu SP, Chen SG, Huang JT, Luo T et al. EFEMP1 expression promotes angiogenesis and accelerates the growth of cervical cancer in vivo. Gynecol Oncol 2011; 121: 174–180.

    Article  CAS  PubMed  Google Scholar 

  48. Hwang CF, Chien CY, Huang SC, Yin YF, Huang CC, Fang FM et al. Fibulin-3 is associated with tumour progression and a poor prognosis in nasopharyngeal carcinomas and inhibits cell migration and invasion via suppressed AKT activity. J Pathol 2010; 222: 367–379.

    Article  CAS  PubMed  Google Scholar 

  49. Pass HI, Levin SM, Harbut MR, Melamed J, Chiriboga L, Donington J et al. Fibulin-3 as a blood and effusion biomarker for pleural mesothelioma. N Engl J Med 2012; 367: 1417–1427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Creaney J, Dick IM, Meniawy TM, Leong SL, Leon JS, Demelker Y et al. Comparison of fibulin-3 and mesothelin as markers in malignant mesothelioma. Thorax 2014; 69: 895–902.

    Article  PubMed  Google Scholar 

  51. Chen J, Wei D, Zhao Y, Liu X, Zhang J . Overexpression of EFEMP1 correlates with tumor progression and poor prognosis in human ovarian carcinoma. PLoS One 2013; 8: e78783.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Camaj P, Seeliger H, Ischenko I, Krebs S, Blum H, De Toni EN et al. EFEMP1 binds the EGF receptor and activates MAPK and Akt pathways in pancreatic carcinoma cells. Biol Chem 2009; 390: 1293–1302.

    Article  CAS  PubMed  Google Scholar 

  53. Hu Y, Gao H, Vo C, Ke C, Pan F, Yu L et al. Anti-EGFR function of EFEMP1 in glioma cells and patient prognosis. Oncoscience 2014; 1: 205–215.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Gooz M . ADAM-17: the enzyme that does it all. Crit Rev Biochem Mol Biol 2010; 45: 146–169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Newton RC, Solomon KA, Covington MB, Decicco CP, Haley PJ, Friedman SM et al. Biology of TACE inhibition. Ann Rheum Dis 2001; 60 (Suppl 3): iii25–iii32.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Chen X, Chen L, Chen J, Hu W, Gao H, Xie B et al. ADAM17 promotes U87 glioblastoma stem cell migration and invasion. Brain Res 2013; 1538: 151–158.

    Article  CAS  PubMed  Google Scholar 

  57. Chen X, Chen L, Zhang R, Yi Y, Ma Y, Yan K et al. ADAM17 regulates self-renewal and differentiation of U87 glioblastoma stem cells. Neurosci Lett 2013; 537: 44–49.

    Article  CAS  PubMed  Google Scholar 

  58. Wolpert F, Tritschler I, Steinle A, Weller M, Eisele G . A disintegrin and metalloproteinases 10 and 17 modulate the immunogenicity of glioblastoma-initiating cells. Neuro Oncol 2014; 16: 382–391.

    Article  CAS  PubMed  Google Scholar 

  59. Zheng X, Jiang F, Katakowski M, Lu Y, Chopp M . ADAM17 promotes glioma cell malignant phenotype. Mol Carcinog 2012; 51: 150–164.

    Article  CAS  PubMed  Google Scholar 

  60. Giltay R, Timpl R, Kostka G . Sequence, recombinant expression and tissue localization of two novel extracellular matrix proteins, fibulin-3 and fibulin-4. Matrix Biol 1999; 18: 469–480.

    Article  CAS  PubMed  Google Scholar 

  61. Van Antwerp DJ, Martin SJ, Kafri T, Green DR, Verma IM . Suppression of TNF-α-induced apoptosis by NF-κB. Science 1996; 274: 787–789.

    Article  CAS  PubMed  Google Scholar 

  62. Ceccarelli M, Barthel FP, Malta TM, Sabedot TS, Salama SR, Murray BA et al. Molecular profiling reveals biologically discrete subsets and pathways of progression in diffuse glioma. Cell 2016; 164: 550–563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Celiku O, Johnson S, Zhao S, Camphausen K, Shankavaram U . Visualizing molecular profiles of glioblastoma with GBM-BioDP. PLoS ONE 2014; 9: e101239.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Pahl HL . Activators and target genes of Rel/NF-κB transcription factors. Oncogene 1999; 18: 6853–6866.

    Article  CAS  PubMed  Google Scholar 

  65. Shelest E, Kel AE, Goessling E, Wingender E . Prediction of potential C/EBP/NF-κB composite elements using matrix-based search methods. In Silico Biol 2003; 3: 71–79.

    CAS  PubMed  Google Scholar 

  66. Kilkenny C, Browne W, Cuthill IC, Emerson M, Altman DG, NC3Rs Reporting Guidelines Working Group. Animal research: reporting in vivo experiments: the ARRIVE guidelines. Br J Pharmacol 2010; 160: 1577–1579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Institutes of Health (R01CA152065) and the National Brain Tumor Society to MSV, and the Joel Gingras Jr. Research Fellowship from the American Brain Tumor Association to BH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M S Viapiano.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nandhu, M., Kwiatkowska, A., Bhaskaran, V. et al. Tumor-derived fibulin-3 activates pro-invasive NF-κB signaling in glioblastoma cells and their microenvironment. Oncogene 36, 4875–4886 (2017). https://doi.org/10.1038/onc.2017.109

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2017.109

This article is cited by

Search

Quick links