Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Epigenetic silencing of miR-124 prevents spermine oxidase regulation: implications for Helicobacter pylori-induced gastric cancer

Abstract

Chronic inflammation contributes to the development of various forms of cancer. The polyamine catabolic enzyme spermine oxidase (SMOX) is induced in chronic inflammatory conditions, including Helicobacter pylori-associated gastritis, where its production of hydrogen peroxide contributes to DNA damage and subsequent tumorigenesis. MicroRNA expression levels are also altered in inflammatory conditions; specifically, the tumor suppressor miR-124 becomes silenced by DNA methylation. We sought to determine if this repression of miR-124 is associated with elevated SMOX activity and concluded that miR-124 is indeed a negative regulator of SMOX. In gastric adenocarcinoma cells harboring highly methylated and silenced mir-124 gene loci, 5-azacytidine treatment allowed miR-124 re-expression and decreased SMOX expression. Overexpression of an exogenous miR-124-3p mimic repressed SMOX mRNA and protein expression as well as H2O2 production by >50% within 24 h. Reporter assays indicated that direct interaction of miR-124 with the 3′-untranslated region of SMOX mRNA contributes to this negative regulation. Importantly, overexpression of miR-124 before infection with H. pylori prevented the induction of SMOX believed to contribute to inflammation-associated tumorigenesis. Compelling human in vivo data from H. pylori-positive gastritis tissues indicated that the mir-124 gene loci are more heavily methylated in a Colombian population characterized by elevated SMOX expression and a high risk for gastric cancer. Furthermore, the degree of mir-124 methylation significantly correlated with SMOX expression throughout the population. These results indicate a protective role for miR-124 through the inhibition of SMOX-mediated DNA damage in the etiology of H. pylori-associated gastric cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Wang Y, Devereux W, Woster PM, Stewart TM, Hacker A, Casero RA Jr . Cloning and characterization of a human polyamine oxidase that is inducible by polyamine analogue exposure. Cancer Res 2001; 61: 5370–5373.

    CAS  PubMed  Google Scholar 

  2. Murray-Stewart T, Wang Y, Goodwin A, Hacker A, Meeker A, Casero RA Jr . Nuclear localization of human spermine oxidase isoforms—possible implications in drug response and disease etiology. FEBS J 2008; 275: 2795–2806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cervelli M, Bellini A, Bianchi M, Marcocci L, Nocera S, Polticelli F et al. Mouse spermine oxidase gene splice variants. Nuclear subcellular localization of a novel active isoform. Eur J Biochem 2004; 271: 760–770.

    Article  CAS  PubMed  Google Scholar 

  4. Ha HC, Sirisoma NS, Kuppusamy P, Zweier JL, Woster PM, Casero RA Jr . The natural polyamine spermine functions directly as a free radical scavenger. Proc Natl Acad Sci USA 1998; 95: 11140–11145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chaturvedi R, Cheng Y, Asim M, Bussiere FI, Xu H, Gobert AP et al. Induction of polyamine oxidase 1 by Helicobacter pylori causes macrophage apoptosis by hydrogen peroxide release and mitochondrial membrane depolarization. J Biol Chem 2004; 279: 40161–40173.

    Article  CAS  PubMed  Google Scholar 

  6. Xu H, Chaturvedi R, Cheng Y, Bussiere FI, Asim M, Yao MD et al. Spermine oxidation induced by Helicobacter pylori results in apoptosis and DNA damage: implications for gastric carcinogenesis. Cancer Res 2004; 64: 8521–8525.

    Article  CAS  PubMed  Google Scholar 

  7. Goodwin AC, Destefano Shields CE, Wu S, Huso DL, Wu X, Murray-Stewart TR et al. Polyamine catabolism contributes to enterotoxigenic Bacteroides fragilis-induced colon tumorigenesis. Proc Natl Acad Sci USA 2011; 108: 15354–15359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Babbar N, Casero RA Jr . Tumor necrosis factor-alpha increases reactive oxygen species by inducing spermine oxidase in human lung epithelial cells: a potential mechanism for inflammation-induced carcinogenesis. Cancer Res 2006; 66: 11125–11130.

    Article  CAS  PubMed  Google Scholar 

  9. Chaturvedi R, Asim M, Piazuelo MB, Yan F, Barry DP, Sierra JC et al. Activation of EGFR and ERBB2 by Helicobacter pylori results in survival of gastric epithelial cells with DNA damage. Gastroenterology 2014; 146: 1739–1751, 1714.

    Article  CAS  PubMed  Google Scholar 

  10. Goodwin AC, Jadallah S, Toubaji A, Lecksell K, Hicks JL, Kowalski J et al. Increased spermine oxidase expression in human prostate cancer and prostatic intraepithelial neoplasia tissues. Prostate 2008; 68: 766–772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hong SK, Chaturvedi R, Piazuelo MB, Coburn LA, Williams CS, Delgado AG et al. Increased expression and cellular localization of spermine oxidase in ulcerative colitis and relationship to disease activity. Inflamm Bowel Dis 2010; 16: 1557–1566.

    Article  PubMed  Google Scholar 

  12. Chaturvedi R, Asim M, Romero-Gallo J, Barry DP, Hoge S, de Sablet T et al. Spermine oxidase mediates the gastric cancer risk associated with Helicobacter pylori CagA. Gastroenterology 2011; 141: 1696–1708, 1691 and 1692.

    Article  CAS  PubMed  Google Scholar 

  13. Chaturvedi R, de Sablet T, Asim M, Piazuelo MB, Barry DP, Verriere TG et al. Increased Helicobacter pylori-associated gastric cancer risk in the Andean region of Colombia is mediated by spermine oxidase. Oncogene 2015; 34: 3429–3440.

    Article  CAS  PubMed  Google Scholar 

  14. Goodwin CS . Helicobacter pylori gastritis, peptic ulcer, and gastric cancer: clinical and molecular aspects. Clin Infect Dis 1997; 25: 1017–1019.

    Article  CAS  PubMed  Google Scholar 

  15. Plummer M, Franceschi S, Vignat J, Forman D, de Martel C . Global burden of gastric cancer attributable to Helicobacter pylori. Int J Cancer 2015; 136: 487–490.

    Article  CAS  PubMed  Google Scholar 

  16. Peek RM Jr, Blaser MJ . Helicobacter pylori and gastrointestinal tract adenocarcinomas. Nat Rev Cancer 2002; 2: 28–37.

    Article  CAS  PubMed  Google Scholar 

  17. Malfertheiner P, Sipponen P, Naumann M, Moayyedi P, Megraud F, Xiao SD et al. Helicobacter pylori eradication has the potential to prevent gastric cancer: a state-of-the-art critique. Am J Gastroenterol 2005; 100: 2100–2115.

    Article  PubMed  Google Scholar 

  18. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A . Global cancer statistics, 2012. CA Cancer J Clin 2015; 65: 87–108.

    Article  PubMed  Google Scholar 

  19. Camargo MC, Yepez MC, Ceron C, Guerrero N, Bravo LE, Correa P et al. Age at acquisition of Helicobacter pylori infection: comparison of two areas with contrasting risk of gastric cancer. Helicobacter 2004; 9: 262–270.

    Article  PubMed  Google Scholar 

  20. Correa P, Cuello C, Duque E, Burbano LC, Garcia FT, Bolanos O et al. Gastric cancer in Colombia. III. Natural history of precursor lesions. J Natl Cancer Inst 1976; 57: 1027–1035.

    Article  CAS  PubMed  Google Scholar 

  21. Ando T, Yoshida T, Enomoto S, Asada K, Tatematsu M, Ichinose M et al. DNA methylation of microRNA genes in gastric mucosae of gastric cancer patients: its possible involvement in the formation of epigenetic field defect. Int J Cancer 2009; 124: 2367–2374.

    Article  CAS  PubMed  Google Scholar 

  22. Ueda Y, Ando T, Nanjo S, Ushijima T, Sugiyama T . DNA methylation of microRNA-124a is a potential risk marker of colitis-associated cancer in patients with ulcerative colitis. Dig Dis Sci 2014; 59: 2444–2451.

    Article  CAS  PubMed  Google Scholar 

  23. Shi XB, Xue L, Ma AH, Tepper CG, Gandour-Edwards R, Kung HJ et al. Tumor suppressive miR-124 targets androgen receptor and inhibits proliferation of prostate cancer cells. Oncogene 2013; 32: 4130–4138.

    Article  CAS  PubMed  Google Scholar 

  24. Lujambio A, Ropero S, Ballestar E, Fraga MF, Cerrato C, Setién F et al. Genetic unmasking of an epigenetically silenced microRNA in human cancer cells. Cancer Res 2007; 67: 1424–1429.

    Article  CAS  PubMed  Google Scholar 

  25. Ushijima T, Hattori N . Molecular pathways: involvement of Helicobacter pylori-triggered inflammation in the formation of an epigenetic field defect, and its usefulness as cancer risk and exposure markers. Clin Cancer Res 2012; 18: 923–929.

    Article  CAS  PubMed  Google Scholar 

  26. Koukos G, Polytarchou C, Kaplan JL, Morley-Fletcher A, Gras-Miralles B, Kokkotou E et al. MicroRNA-124 regulates STAT3 expression and is down-regulated in colon tissues of pediatric patients with ulcerative colitis. Gastroenterology 2013; 145: 842–852, 842.

    Article  CAS  PubMed  Google Scholar 

  27. Wilting SM, van Boerdonk RA, Henken FE, Meijer CJ, Diosdado B, Meijer GA et al. Methylation-mediated silencing and tumour suppressive function of hsa-miR-124 in cervical cancer. Mol Cancer 2010; 9: 167–181.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Rider JE, Hacker A, Mackintosh CA, Pegg AE, Woster PM, Casero RA Jr . Spermine and spermidine mediate protection against oxidative damage caused by hydrogen peroxide. Amino Acids 2007; 33: 231–240.

    Article  CAS  PubMed  Google Scholar 

  29. Pegg AE, Xiong H, Feith DJ, Shantz LM . S-adenosylmethionine decarboxylase: structure, function and regulation by polyamines. Biochem Soc Trans 1998; 26: 580–586.

    Article  CAS  PubMed  Google Scholar 

  30. Hardbower DM, de Sablet T, Chaturvedi R, Wilson KT . Chronic inflammation and oxidative stress: the smoking gun for Helicobacter pylori-induced gastric cancer? Gut Microbes 2013; 4: 475–481.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Maekita T, Nakazawa K, Mihara M, Nakajima T, Yanaoka K, Iguchi M et al. High levels of aberrant DNA methylation in Helicobacter pylori-infected gastric mucosae and its possible association with gastric cancer risk. Clin Cancer Res 2006; 12: 989–995.

    Article  CAS  PubMed  Google Scholar 

  32. Nakajima T, Maekita T, Oda I, Gotoda T, Yamamoto S, Umemura S et al. Higher methylation levels in gastric mucosae significantly correlate with higher risk of gastric cancers. Cancer Epidemiol Biomarkers Prev 2006; 15: 2317–2321.

    Article  CAS  PubMed  Google Scholar 

  33. Niwa T, Tsukamoto T, Toyoda T, Mori A, Tanaka H, Maekita T et al. Inflammatory processes triggered by Helicobacter pylori infection cause aberrant DNA methylation in gastric epithelial cells. Cancer Res 2010; 70: 1430–1440.

    Article  CAS  PubMed  Google Scholar 

  34. Schneider BG, Piazuelo MB, Sicinschi LA, Mera R, Peng DF, Roa JC et al. Virulence of infecting Helicobacter pylori strains and intensity of mononuclear cell infiltration are associated with levels of DNA hypermethylation in gastric mucosae. Epigenetics 2013; 8: 1153–1161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Schneider BG, Peng DF, Camargo MC, Piazuelo MB, Sicinschi LA, Mera R et al. Promoter DNA hypermethylation in gastric biopsies from subjects at high and low risk for gastric cancer. Int J Cancer 2010; 127: 2588–2597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kodaman N, Pazos A, Schneider BG, Piazuelo MB, Mera R, Sobota RS et al. Human and Helicobacter pylori coevolution shapes the risk of gastric disease. Proc Natl Acad Sci USA 2014; 111: 1455–1460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Xie L, Zhang Z, Tan Z, He R, Zeng X, Xie Y et al. MicroRNA-124 inhibits proliferation and induces apoptosis by directly repressing EZH2 in gastric cancer. Mol Cell Biochem 2014; 392: 153–159.

    Article  CAS  PubMed  Google Scholar 

  38. Dalal RS, Moss SF . At the bedside: Helicobacter pylori, dysregulated host responses, DNA damage, and gastric cancer. J Leukoc Biol 2014; 96: 213–224.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ford AC, Forman D, Hunt RH, Yuan Y, Moayyedi P . Helicobacter pylori eradication therapy to prevent gastric cancer in healthy asymptomatic infected individuals: systematic review and meta-analysis of randomised controlled trials. BMJ 2014; 348: 3174–3187.

    Article  Google Scholar 

  40. Asada K, Nakajima T, Shimazu T, Yamamichi N, Maekita T, Yokoi C et al. Demonstration of the usefulness of epigenetic cancer risk prediction by a multicentre prospective cohort study. Gut 2015; 64: 388–396.

    Article  CAS  PubMed  Google Scholar 

  41. Tsai H-C, Li H, Van Neste L, Cai Y, Robert C, Rassool FV et al. Transient low doses of DNA demethylating agents exert durable anti-tumor effects on hematological and epithelial tumor cells. Cancer Cell 2012; 21: 430–446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang H, Jiang Y, Peng H, Chen Y, Zhu P, Huang Y . Recent progress in microRNA delivery for cancer therapy by non-viral synthetic vectors. Adv Drug Deliv Rev 2015; 81: 142–160.

    Article  CAS  PubMed  Google Scholar 

  43. O'Hagan HM, Wang W, Sen S, Destefano Shields C, Lee SS, Zhang YW et al. Oxidative damage targets complexes containing DNA methyltransferases, SIRT1, and polycomb members to promoter CpG Islands. Cancer Cell 2011; 20: 606–619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang Y, Murray-Stewart T, Devereux W, Hacker A, Frydman B, Woster PM et al. Properties of purified recombinant human polyamine oxidase, PAOh1/SMO. Biochem Biophys Res Commun 2003; 304: 605–611.

    Article  CAS  PubMed  Google Scholar 

  45. Kabra PM, Lee HK, Lubich WP, Marton LJ . Solid-phase extraction and determination of dansyl derivatives of unconjugated and acetylated polyamines by reversed-phase liquid chromatography: improved separation systems for polyamines in cerebrospinal fluid, urine and tissue. J Chromatogr 1986; 380: 19–32.

    Article  CAS  PubMed  Google Scholar 

  46. Bradford MM . A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976; 72: 248–254.

    Article  CAS  PubMed  Google Scholar 

  47. Betel D, Wilson M, Gabow A, Marks DS, Sander C . The microRNA.org resource: targets and expression. Nucleic Acids Res 2008; 36: D149–D153.

    Article  CAS  PubMed  Google Scholar 

  48. Lewis BP, Burge CB, Bartel DP . Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005; 120: 15–20.

    Article  CAS  PubMed  Google Scholar 

  49. de Sablet T, Piazuelo MB, Shaffer CL, Schneider BG, Asim M, Chaturvedi R et al. Phylogeographic origin of Helicobacter pylori is a determinant of gastric cancer risk. Gut 2011; 60: 1189–1195.

    Article  CAS  PubMed  Google Scholar 

  50. Shimizu T, Suzuki H, Nojima M, Kitamura H, Yamamoto E, Maruyama R et al. Methylation of a panel of microRNA genes is a novel biomarker for detection of bladder cancer. Eur Urol 2013; 63: 1091–1100.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Alberto Delgado for his technical expertise and performance of SMOX immunohistochemistry studies. This study was supported by National Institutes of Health Grants R01CA051085 and R01CA098454 (to RAC), R01DK053620 and R01CA190612 (to KTW), P01CA028842 (to PC and KTW), P01CA116087 (to KTW), K01AT007324 (to RC), the Samuel Waxman Cancer Research Foundation (to RAC), the Vanderbilt Digestive Disease Research Center grant (P30DK058404), UL1RR024975 (Vanderbilt CTSA, Pilot Project to KTW) and Merit Review Grant 1I01BX001453 from the Office of Medical Research, Department of Veterans Affairs (to KTW).

Author contributions

TMS, KTW and RAC designed the research; TMS, JCS, MBP, RC and BGS performed the research; LEB and PC provided unique human samples; TMS, MBP, RMM, KTW and RAC analyzed the data; and TMS, KTW and RAC wrote the paper. All authors revised and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R A Casero.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murray-Stewart, T., Sierra, J., Piazuelo, M. et al. Epigenetic silencing of miR-124 prevents spermine oxidase regulation: implications for Helicobacter pylori-induced gastric cancer. Oncogene 35, 5480–5488 (2016). https://doi.org/10.1038/onc.2016.91

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.91

This article is cited by

Search

Quick links