Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Targeting CK2-driven non-oncogene addiction in B-cell tumors

Subjects

Abstract

Genetic mutations of oncogenes often underlie deranged cell growth and altered differentiation pathways leading to malignant transformation of B-lymphocytes. However, addiction to oncogenes is not the only drive to lymphoid tumor pathogenesis. Dependence on non-oncogenes, which act by propelling basic mechanisms of cell proliferation and survival, has also been recognized in the pathobiology of lymphoid leukemias, lymphomas and multiple myeloma. Among the growing number of molecules that may uphold non-oncogene addiction, a key place is increasingly being recognized to the serine-threonine kinase CK2. This enzyme is overexpressed and overactive in B-acute lymphoblastic leukemia, multiple myeloma, chronic lymphocytic leukemia and non-Hodgkin lymphomas, such as mantle cell, follicular, Burkitt's and diffuse large B-cell lymphomas. In these tumors, CK2 may serve the activity of oncogenes, similar to BCR-ABL and c-MYC, control the activation of critical signaling cascades, such as NF-κB (nuclear factor-κB), STAT3 (signal transducer and activator of transcription 3) and PTEN/PI3K/AKT (phosphatase and tensin homolog protein/phosphoinositide 3-kinase/AKR thymoma), and sustain multiple cellular stress-elicited pathways, such as the proteotoxic stress, unfolded protein and DNA-damage responses. CK2 has also been shown to have an essential role in tuning signals derived from the stromal tumor microenvironment. Not surprisingly, targeting CK2 in lymphoid tumor cell lines or mouse xenograft models can boost the cytotoxic effects of both conventional chemotherapeutics and novel agents, similar to heat-shock protein 90, proteasome and tyrosine kinases inhibitors. In this review, we summarize the evidence indicating how CK2 embodies most of the features of a cancer growth-promoting non-oncogene, focusing on lymphoid tumors. We further discuss the preclinical data of the use of small ATP-competitive CK2 inhibitors, which hold the promise to be additional options in novel drug combinations for the therapy of lymphoid and plasmacellular malignancies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Solimini NL, Luo J, Elledge SJ . Non-oncogene addiction and the stress phenotype of cancer cells. Cell 2007; 130: 986–988.

    CAS  PubMed  Google Scholar 

  2. Luo J, Solimini NL, Elledge SJ . Principles of cancer therapy: oncogene and non-oncogene addiction. Cell 2009; 136: 823–837.

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Jonkers J, Berns A . Oncogene addiction: sometimes a temporary slavery. Cancer Cell 2004; 6: 535–538.

    CAS  PubMed  Google Scholar 

  4. Galluzzi L, Vitale I, Kroemer G . Past, present, and future of molecular and cellular oncology. Front Oncol 2011; 1: 1.

    PubMed Central  PubMed  Google Scholar 

  5. Maxwell KN, Domchek SM . Cancer treatment according to BRCA1 and BRCA2 mutations. Nat Rev Clin Oncol 2012; 9: 520–528.

    CAS  PubMed  Google Scholar 

  6. Moreau P, Richardson PG, Cavo M, Orlowski RZ, San Miguel JF, Palumbo A et al. Proteasome inhibitors in multiple myeloma: 10 years later. Blood 2012; 120: 947–959.

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Aronson LI, Davies FE . DangER: protein ovERload. Targeting protein degradation to treat myeloma. Haematologica 2012; 97: 1119–1130.

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Mittrucker HW, Matsuyama T, Grossman A, Kundig TM, Potter J, Shahinian A et al. Requirement for the transcription factor LSIRF/IRF4 for mature B and T lymphocyte function. Science 1997; 275: 540–543.

    CAS  PubMed  Google Scholar 

  9. Lu R . Interferon regulatory factor 4 and 8 in B-cell development. Trends Immunol 2008; 29: 487–492.

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Shaffer AL, Emre NC, Lamy L, Ngo VN, Wright G, Xiao W et al. IRF4 addiction in multiple myeloma. Nature 2008; 454: 226–231.

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Yang Y, Shaffer AL III, Emre NC, Ceribelli M, Zhang M, Wright G et al. Exploiting synthetic lethality for the therapy of ABC diffuse large B cell lymphoma. Cancer Cell 2012; 21: 723–737.

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Riabinska A, Daheim M, Herter-Sprie GS, Winkler J, Fritz C, Hallek M et al. Therapeutic targeting of a robust non-oncogene addiction to PRKDC in ATM-defective tumors. Sci Transl Med 2013; 5: 189ra178.

    Google Scholar 

  13. Schaffner C, Stilgenbauer S, Rappold GA, Dohner H, Lichter P . Somatic ATM mutations indicate a pathogenic role of ATM in B-cell chronic lymphocytic leukemia. Blood 1999; 94: 748–753.

    CAS  PubMed  Google Scholar 

  14. Schaffner C, Idler I, Stilgenbauer S, Dohner H, Lichter P . Mantle cell lymphoma is characterized by inactivation of the ATM gene. Proc Natl Acad Sci USA 2000; 97: 2773–2778.

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Austen B, Barone G, Reiman A, Byrd PJ, Baker C, Starczynski J et al. Pathogenic ATM mutations occur rarely in a subset of multiple myeloma patients. Br J Haematol 2008; 142: 925–933.

    CAS  PubMed  Google Scholar 

  16. Sawas A, Diefenbach C, O'Connor OA . New therapeutic targets and drugs in non-Hodgkin's lymphoma. Curr Opin Hematol 2011; 18: 280–287.

    CAS  PubMed  Google Scholar 

  17. Hill RJ, Lou Y, Tan SL . B-cell antigen receptor signaling in chronic lymphocytic leukemia: therapeutic targets and translational opportunities. Int Rev Immunol 2013; 32: 377–396.

    CAS  PubMed  Google Scholar 

  18. Fowler N, Davis E . Targeting B-cell receptor signaling: changing the paradigm. Hematol Am Soc Hematol Educ Program 2013; 2013: 553–560.

    Google Scholar 

  19. Kuiatse I, Baladandayuthapani V, Lin HY, Thomas SK, Bjorklund CC, Weber DM et al. Targeting the spleen tyrosine kinase with fostamatinib as a strategy against waldenstrom macroglobulinemia. Clin Cancer Res 2015; 21: 2538–2545.

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Herman SE, Barr PM, McAuley EM, Liu D, Wiestner A, Friedberg JW . Fostamatinib inhibits B-cell receptor signaling, cellular activation and tumor proliferation in patients with relapsed and refractory chronic lymphocytic leukemia. Leukemia 2013; 27: 1769–1773.

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Flinn IW, Kahl BS, Leonard JP, Furman RR, Brown JR, Byrd JC et al. Idelalisib, a selective inhibitor of phosphatidylinositol 3-kinase-delta, as therapy for previously treated indolent non-Hodgkin lymphoma. Blood 2014; 123: 3406–3413.

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Castillo JJ, Treon SP, Davids MS . Inhibition of the bruton tyrosine kinase pathway in B-cell lymphoproliferative disorders. Cancer J 2016; 22: 34–39.

    CAS  PubMed  Google Scholar 

  23. Young RM, Shaffer AL 3rd, Phelan JD, Staudt LM . B-cell receptor signaling in diffuse large B-cell lymphoma. Semin Hematol 2015; 52: 77–85.

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Balakrishnan K, Peluso M, Fu M, Rosin NY, Burger JA, Wierda WG et al. The phosphoinositide-3-kinase (PI3K)-delta and gamma inhibitor, IPI-145 (Duvelisib), overcomes signals from the PI3K/AKT/S6 pathway and promotes apoptosis in CLL. Leukemia 2015; 29: 1811–1822.

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Curran E, Smith SM . Phosphoinositide 3-kinase inhibitors in lymphoma. Curr Opin Oncol 2014; 26: 469–475.

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Litchfield DW . Protein kinase CK2: structure, regulation and role in cellular decisions of life and death. Biochem J 2003; 369: 1–15.

    CAS  PubMed Central  PubMed  Google Scholar 

  27. St-Denis NA, Litchfield DW . Protein kinase CK2 in health and disease: From birth to death: the role of protein kinase CK2 in the regulation of cell proliferation and survival. Cell Mol Life Sci 2009; 66: 1817–1829.

    CAS  PubMed  Google Scholar 

  28. Trembley JH, Chen Z, Unger G, Slaton J, Kren BT, Van Waes C et al. Emergence of protein kinase CK2 as a key target in cancer therapy. Biofactors 2010; 36: 187–195.

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Di Maira G, Salvi M, Arrigoni G, Marin O, Sarno S, Brustolon F et al. Protein kinase CK2 phosphorylates and upregulates Akt/PKB. Cell Death Differ 2005; 12: 668–677.

    CAS  PubMed  Google Scholar 

  30. Di Maira G, Brustolon F, Pinna LA, Ruzzene M . Dephosphorylation and inactivation of Akt/PKB is counteracted by protein kinase CK2 in HEK 293 T cells. Cell Mol Life Sci 2009; 66: 3363–3373.

    PubMed  Google Scholar 

  31. Wang S, Jones KA . CK2 controls the recruitment of Wnt regulators to target genes in vivo. Curr Biol 2006; 16: 2239–2244.

    CAS  PubMed  Google Scholar 

  32. Ruzzene M, Tosoni K, Zanin S, Cesaro L, Pinna LA . Protein kinase CK2 accumulation in ‘oncophilic’ cells: causes and effects. Mol Cell Biochem 2011; 356: 5–10.

    CAS  PubMed  Google Scholar 

  33. Ahmed K, Gerber DA, Cochet C . Joining the cell survival squad: an emerging role for protein kinase CK2. Trends Cell Biol 2002; 12: 226–230.

    CAS  PubMed  Google Scholar 

  34. Ruzzene M, Pinna LA . Addiction to protein kinase CK2: a common denominator of diverse cancer cells? Biochim Biophys Acta 2010; 1804: 499–504.

    CAS  PubMed  Google Scholar 

  35. Trembley JH, Wang G, Unger G, Slaton J, Ahmed K . Protein kinase CK2 in health and disease: CK2: a key player in cancer biology. Cell Mol Life Sci 2009; 66: 1858–1867.

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Piazza F, Manni S, Ruzzene M, Pinna LA, Gurrieri C, Semenzato G . Protein kinase CK2 in hematologic malignancies: reliance on a pivotal cell survival regulator by oncogenic signaling pathways. Leukemia 2012; 26: 1174–1179.

    CAS  PubMed  Google Scholar 

  37. Hanahan D, Weinberg RA . Hallmarks of cancer: the next generation. Cell 2011; 144: 646–674.

    Article  CAS  PubMed  Google Scholar 

  38. Fruman DA, Rommel C . PI3K and cancer: lessons, challenges and opportunities. Nat Rev Drug Discov 2014; 13: 140–156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Schubbert S, Shannon K, Bollag G . Hyperactive Ras in developmental disorders and cancer. Nat Rev Cancer 2007; 7: 295–308.

    CAS  PubMed  Google Scholar 

  40. Torres J, Pulido R . The tumor suppressor PTEN is phosphorylated by the protein kinase CK2 at its C terminus. Implications for PTEN stability to proteasome-mediated degradation. J Biol Chem 2001; 276: 993–998.

    CAS  PubMed  Google Scholar 

  41. Vazquez F, Ramaswamy S, Nakamura N, Sellers WR . Phosphorylation of the PTEN tail regulates protein stability and function. Mol Cell Biol 2000; 20: 5010–5018.

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Plotnikov A, Chuderland D, Karamansha Y, Livnah O, Seger R . Nuclear extracellular signal-regulated kinase 1 and 2 translocation is mediated by casein kinase 2 and accelerated by autophosphorylation. Mol Cell Biol 2011; 31: 3515–3530.

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Schevzov G, Kee AJ, Wang B, Sequeira VB, Hook J, Coombes JD et al. Regulation of cell proliferation by ERK and signal-dependent nuclear translocation of ERK is dependent on Tm5NM1-containing actin filaments. Mol Biol Cell 2015; 26: 2475–2490.

    PubMed Central  PubMed  Google Scholar 

  44. Izeradjene K, Douglas L, Delaney A, Houghton JA . Influence of casein kinase II in tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in human rhabdomyosarcoma cells. Clin Cancer Res 2004; 10: 6650–6660.

    CAS  PubMed  Google Scholar 

  45. Izeradjene K, Douglas L, Delaney A, Houghton JA . Casein kinase II (CK2) enhances death-inducing signaling complex (DISC) activity in TRAIL-induced apoptosis in human colon carcinoma cell lines. Oncogene 2005; 24: 2050–2058.

    CAS  PubMed  Google Scholar 

  46. Shin S, Lee Y, Kim W, Ko H, Choi H, Kim K . Caspase-2 primes cancer cells for TRAIL-mediated apoptosis by processing procaspase-8. EMBO J 2005; 24: 3532–3542.

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Wang G, Ahmad KA, Ahmed K . Role of protein kinase CK2 in the regulation of tumor necrosis factor-related apoptosis inducing ligand-induced apoptosis in prostate cancer cells. Cancer Res 2006; 66: 2242–2249.

    CAS  PubMed  Google Scholar 

  48. Duncan JS, Turowec JP, Vilk G, Li SS, Gloor GB, Litchfield DW . Regulation of cell proliferation and survival: convergence of protein kinases and caspases. Biochim Biophys Acta 2010; 1804: 505–510.

    CAS  PubMed  Google Scholar 

  49. Duncan JS, Turowec JP, Duncan KE, Vilk G, Wu C, Luscher B et al. A peptide-based target screen implicates the protein kinase CK2 in the global regulation of caspase signaling. Sci Signal 2011; 4: ra30.

    PubMed  Google Scholar 

  50. Pospisilova S, Brazda V, Kucharikova K, Luciani MG, Hupp TR, Skladal P et al. Activation of the DNA-binding ability of latent p53 protein by protein kinase C is abolished by protein kinase CK2. Biochem J 2004; 378: 939–947.

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Cox ML, Meek DW . Phosphorylation of serine 392 in p53 is a common and integral event during p53 induction by diverse stimuli. Cell Signal 2010; 22: 564–571.

    CAS  PubMed  Google Scholar 

  52. Landesman-Bollag E, Channavajhala PL, Cardiff RD, Seldin DC . p53 deficiency and misexpression of protein kinase CK2alpha collaborate in the development of thymic lymphomas in mice. Oncogene 1998; 16: 2965–2974.

    CAS  PubMed  Google Scholar 

  53. Giusiano S, Cochet C, Filhol O, Duchemin-Pelletier E, Secq V, Bonnier P et al. Protein kinase CK2alpha subunit over-expression correlates with metastatic risk in breast carcinomas: quantitative immunohistochemistry in tissue microarrays. Eur J Cancer 2011; 47: 792–801.

    CAS  PubMed  Google Scholar 

  54. Kriajevska M, Bronstein IB, Scott DJ, Tarabykina S, Fischer-Larsen M, Issinger O et al. Metastasis-associated protein Mts1 (S100A4) inhibits CK2-mediated phosphorylation and self-assembly of the heavy chain of nonmuscle myosin. Biochim Biophys Acta 2000; 1498: 252–263.

    CAS  PubMed  Google Scholar 

  55. Drygin D, Ho CB, Omori M, Bliesath J, Proffitt C, Rice R et al. Protein kinase CK2 modulates IL-6 expression in inflammatory breast cancer. Biochem Biophys Res Commun 2011; 415: 163–167.

    CAS  PubMed  Google Scholar 

  56. Montenarh M . Protein kinase CK2 and angiogenesis. Adv Clin Exp Med 2014; 23: 153–158.

    PubMed  Google Scholar 

  57. Mottet D, Ruys SP, Demazy C, Raes M, Michiels C . Role for casein kinase 2 in the regulation of HIF-1 activity. Int J Cancer 2005; 117: 764–774.

    CAS  PubMed  Google Scholar 

  58. Siddiqui-Jain A, Drygin D, Streiner N, Chua P, Pierre F, O'Brien SE et al. CX-4945, an orally bioavailable selective inhibitor of protein kinase CK2, inhibits prosurvival and angiogenic signaling and exhibits antitumor efficacy. Cancer Res 2010; 70: 10288–10298.

    CAS  PubMed  Google Scholar 

  59. Deshiere A, Duchemin-Pelletier E, Spreux E, Ciais D, Combes F, Vandenbrouck Y et al. Unbalanced expression of CK2 kinase subunits is sufficient to drive epithelial-to-mesenchymal transition by Snail1 induction. Oncogene 2013; 32: 1373–1383.

    CAS  PubMed  Google Scholar 

  60. Deshiere A, Duchemin-Pelletier E, Spreux E, Ciais D, Forcet C, Cochet C et al. Regulation of epithelial to mesenchymal transition: CK2beta on stage. Mol Cell Biochem 2011; 356: 11–20.

    CAS  PubMed  Google Scholar 

  61. Keller DM, Lu H . P53 serine 392 phosphorylation increases after UV through induction of the assembly of the CK2.hSPT16.SSRP1 complex. J Biol Chem 2002; 277: 50206–50213.

    CAS  PubMed  Google Scholar 

  62. Keller DM, Zeng X, Wang Y, Zhang QH, Kapoor M, Shu H et al. A DNA damage-induced p53 serine 392 kinase complex contains CK2, hSpt16, and SSRP1. Mol Cell 2001; 7: 283–292.

    CAS  PubMed  Google Scholar 

  63. Olsen BB, Issinger OG, Guerra B . Regulation of DNA-dependent protein kinase by protein kinase CK2 in human glioblastoma cells. Oncogene 2010; 29: 6016–6026.

    CAS  PubMed  Google Scholar 

  64. Olsen BB, Wang SY, Svenstrup TH, Chen BP, Guerra B . Protein kinase CK2 localizes to sites of DNA double-strand break regulating the cellular response to DNA damage. BMC. Mol Biol 2012; 13: 7.

    CAS  Google Scholar 

  65. Strom CE, Mortusewicz O, Finch D, Parsons JL, Lagerqvist A, Johansson F et al. CK2 phosphorylation of XRCC1 facilitates dissociation from DNA and single-strand break formation during base excision repair. DNA Repair (Amst) 2011; 10: 961–969.

    Google Scholar 

  66. Guerra B, Iwabuchi K, Issinger OG . Protein kinase CK2 is required for the recruitment of 53BP1 to sites of DNA double-strand break induced by radiomimetic drugs. Cancer Lett 2014; 345: 115–123.

    CAS  PubMed  Google Scholar 

  67. Peng B, Wang J, Hu Y, Zhao H, Hou W, Zhao H et al. Modulation of LSD1 phosphorylation by CK2/WIP1 regulates RNF168-dependent 53BP1 recruitment in response to DNA damage. Nucleic Acids Res 2015; 43: 5936–5947.

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Melander F, Bekker-Jensen S, Falck J, Bartek J, Mailand N, Lukas J . Phosphorylation of SDT repeats in the MDC1 N terminus triggers retention of NBS1 at the DNA damage-modified chromatin. J Cell Biol 2008; 181: 213–226.

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Khoronenkova SV, Dianova II, Ternette N, Kessler BM, Parsons JL, Dianov GL . ATM-dependent downregulation of USP7/HAUSP by PPM1G activates p53 response to DNA damage. Mol Cell 2012; 45: 801–813.

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Kalathur M, Toso A, Chen J, Revandkar A, Danzer-Baltzer C, Guccini I et al. A chemogenomic screening identifies CK2 as a target for pro-senescence therapy in PTEN-deficient tumours. Nat Commun 2015; 6: 7227.

    CAS  PubMed  Google Scholar 

  71. Dixit D, Sharma V, Ghosh S, Mehta VS, Sen E . Inhibition of Casein kinase-2 induces p53-dependent cell cycle arrest and sensitizes glioblastoma cells to tumor necrosis factor (TNFalpha)-induced apoptosis through SIRT1 inhibition. Cell Death Dis 2012; 3: e271.

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Caino MC, Meshki J, Kazanietz MG . Hallmarks for senescence in carcinogenesis: novel signaling players. Apoptosis 2009; 14: 392–408.

    CAS  PubMed  Google Scholar 

  73. Miyata Y, Nishida E . CK2 controls multiple protein kinases by phosphorylating a kinase-targeting molecular chaperone, Cdc37. Mol Cell Biol 2004; 24: 4065–4074.

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Miyata Y . Protein kinase CK2 in health and disease: CK2: the kinase controlling the Hsp90 chaperone machinery. Cell Mol Life Sci 2009; 66: 1840–1849.

    CAS  PubMed  Google Scholar 

  75. Mishra S, Reichert A, Cunnick J, Senadheera D, Hemmeryckx B, Heisterkamp N et al. Protein kinase CKIIalpha interacts with the Bcr moiety of Bcr/Abl and mediates proliferation of Bcr/Abl-expressing cells. Oncogene 2003; 22: 8255–8262.

    CAS  PubMed  Google Scholar 

  76. Mishra S, Pertz V, Zhang B, Kaur P, Shimada H, Groffen J et al. Treatment of P190 Bcr/Abl lymphoblastic leukemia cells with inhibitors of the serine/threonine kinase CK2. Leukemia 2007; 21: 178–180.

    CAS  PubMed  Google Scholar 

  77. Gomes AM, Soares MVD, Ribeiro P, Caldas J, Póvoa V, Martins LR et al. Adult B-cell acute lymphoblastic leukemia cells display decreased PTEN activity and constitutive hyperactivation of PI3K/Akt pathway despite high PTEN protein levels. Haematologica 2014; 99: 1062–1068.

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Kastner P, Dupuis A, Gaub MP, Herbrecht R, Lutz P, Chan S . Function of Ikaros as a tumor suppressor in B cell acute lymphoblastic leukemia. Am J Blood Res 2013; 3: 1–13.

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Dovat S, Song C, Payne KJ, Li Z . Ikaros, CK2 kinase, and the road to leukemia. Mol Cell Biochem 2011; 356: 201–207.

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Popescu M, Gurel Z, Ronni T, Song C, Hung KY, Payne KJ et al. Ikaros stability and pericentromeric localization are regulated by protein phosphatase 1. J Biol Chem 2009; 284: 13869–13880.

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Song C, Li Z, Erbe AK, Savic A, Dovat S . Regulation of Ikaros function by casein kinase 2 and protein phosphatase 1. World J Biol Chem 2011; 2: 126–131.

    PubMed Central  PubMed  Google Scholar 

  82. Song C, Gowda C, Pan X, Ding Y, Tong Y, Tan BH et al. Targeting casein kinase II restores Ikaros tumor suppressor activity and demonstrates therapeutic efficacy in high-risk leukemia. Blood 2015; 126: 1813–1822.

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Buontempo F, Orsini E, Lonetti A, Cappellini A, Chiarini F, Evangelisti C et al. Synergistic cytotoxic effects of bortezomib and CK2 inhibitor CX-4945 in acute lymphoblastic leukemia: turning off the prosurvival ER chaperone BIP/Grp78 and turning on the pro-apoptotic NF-kappaB. Oncotarget 2015; 7: 1323–1340.

    PubMed Central  Google Scholar 

  84. Shehata M, Schnabl S, Demirtas D, Hilgarth M, Hubmann R, Ponath E et al. Reconstitution of PTEN activity by CK2 inhibitors and interference with the PI3-K/Akt cascade counteract the antiapoptotic effect of human stromal cells in chronic lymphocytic leukemia. Blood 2010; 116: 2513–2521.

    CAS  PubMed  Google Scholar 

  85. Martins LR, Lucio P, Silva MC, Anderes KL, Gameiro P, Silva MG et al. Targeting CK2 overexpression and hyperactivation as a novel therapeutic tool in chronic lymphocytic leukemia. Blood 2010; 116: 2724–2731.

    CAS  PubMed  Google Scholar 

  86. Martins LR, Lucio P, Melao A, Antunes I, Cardoso BA, Stansfield R et al. Activity of the clinical-stage CK2-specific inhibitor CX-4945 against chronic lymphocytic leukemia. Leukemia 2014; 28: 179–182.

    CAS  PubMed  Google Scholar 

  87. Prins RC, Burke RT, Tyner JW, Druker BJ, Loriaux MM, Spurgeon SE . CX-4945, a selective inhibitor of casein kinase-2 (CK2), exhibits anti-tumor activity in hematologic malignancies including enhanced activity in chronic lymphocytic leukemia when combined with fludarabine and inhibitors of the B-cell receptor pathway. Leukemia 2013; 27: 2094–2096.

    CAS  PubMed  Google Scholar 

  88. Piazza FA, Ruzzene M, Gurrieri C, Montini B, Bonanni L, Chioetto G et al. Multiple myeloma cell survival relies on high activity of protein kinase CK2. Blood 2006; 108: 1698–1707.

    CAS  PubMed  Google Scholar 

  89. Manni S, Brancalion A, Mandato E, Tubi LQ, Colpo A, Pizzi M et al. Protein kinase CK2 inhibition down modulates the NF-kappaB and STAT3 survival pathways, enhances the cellular proteotoxic stress and synergistically boosts the cytotoxic effect of bortezomib on multiple myeloma and mantle cell lymphoma cells. PLoS One 2013; 8: e75280.

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Zheng Y, Qin H, Frank SJ, Deng L, Litchfield DW, Tefferi A et al. A CK2-dependent mechanism for activation of the JAK-STAT signaling pathway. Blood 2011; 118: 156–166.

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Aparicio-Siegmund S, Sommer J, Monhasery N, Schwanbeck R, Keil E, Finkenstadt D et al. Inhibition of protein kinase II (CK2) prevents induced signal transducer and activator of transcription (STAT) 1/3 and constitutive STAT3 activation. Oncotarget 2014; 5: 2131–2148.

    PubMed Central  PubMed  Google Scholar 

  92. Manni S, Brancalion A, Tubi LQ, Colpo A, Pavan L, Cabrelle A et al. Protein kinase CK2 protects multiple myeloma cells from ER stress-induced apoptosis and from the cytotoxic effect of HSP90 inhibition through regulation of the unfolded protein response. Clin Cancer Res 2012; 18: 1888–1900.

    CAS  PubMed  Google Scholar 

  93. Manni S, Toscani D, Mandato E, Brancalion A, Quotti Tubi L, Macaccaro P et al. Bone marrow stromal cell-fueled multiple myeloma growth and osteoclastogenesis are sustained by protein kinase CK2. Leukemia 2014; 28: 2094–2097.

    CAS  PubMed  Google Scholar 

  94. Pizzi M, Piazza F, Agostinelli C, Fuligni F, Benvenuti P, Mandato E et al. Protein kinase CK2 is widely expressed in follicular, Burkitt and diffuse large B-cell lymphomas and propels malignant B-cell growth. Oncotarget 2015; 6: 6544–6552.

    PubMed Central  PubMed  Google Scholar 

  95. Wu SY, Lee AY, Lai HT, Zhang H, Chiang CM . Phospho switch triggers Brd4 chromatin binding and activator recruitment for gene-specific targeting. Mol Cell 2013; 49: 843–857.

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Cottini F, Hideshima T, Suzuki R, Tai YT, Bianchini G, Richardson PG et al. Synthetic lethal approaches exploiting DNA damage in aggressive myeloma. Cancer Discov 2015; 5: 972–987.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from Associazione Italiana per la Ricerca sul Cancro (AIRC) to FP (IG 14481) and GS and from the Ministero dell’Istruzione, dell’Università e della Ricerca Scientifica (FIRB—Futuro in Ricerca 2008, no. RBFR086EW9_001). SM is supported by a research fellowship from the ‘Fondazione Umberto Veronesi’, Milan, Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F Piazza.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandato, E., Manni, S., Zaffino, F. et al. Targeting CK2-driven non-oncogene addiction in B-cell tumors. Oncogene 35, 6045–6052 (2016). https://doi.org/10.1038/onc.2016.86

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.86

This article is cited by

Search

Quick links