Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

DNA demethylation induces SALL4 gene re-expression in subgroups of hepatocellular carcinoma associated with Hepatitis B or C virus infection

Abstract

Sal-like protein 4 (SALL4), an embryonic stem cell transcriptional regulator, is re-expressed by an unknown mechanism in poor prognosis hepatocellular carcinoma (HCC), often associated with chronic hepatitis B virus (HBV) infection. Herein, we investigated the mechanism of SALL4 re-expression in HBV-related HCCs. We performed bisulfite sequencing PCR of genomic DNA isolated from HBV-related HCCs and HBV replicating cells, and examined DNA methylation of a CpG island located downstream from SALL4 transcriptional start site (TSS). HBV-related HCCs expressing increased SALL4 exhibited demethylation of specific CpG sites downstream of SALL4 TSS. Similarly, SALL4 re-expression and demethylation of these CpGs was observed in HBV replicating cells. SALL4 is also re-expressed in poor prognosis HCCs of other etiologies. Indeed, increased SALL4 expression in hepatitis C virus-related HCCs correlated with demethylation of these CpG sites. To understand how CpG demethylation downstream of SALL4 TSS regulates SALL4 transcription, we quantified by chromatin immunoprecipitation (ChIP) assays RNA polymerase II occupancy of SALL4 gene, as a function of HBV replication. In absence of HBV replication, RNA polymerase II associated with SALL4 exon1. By contrast, in HBV replicating cells RNA polymerase II occupancy of all SALL4 exons increased, suggesting CpG demethylation downstream from SALL4 TSS influences SALL4 transcriptional elongation. Intriguingly, demethylated CpGs downstream from SALL4 TSS are within binding sites of octamer-binding transcription factor 4 (OCT4) and signal transducer and activator of transcription3 (STAT3). ChIP assays confirmed occupancy of these sites by OCT4 and STAT3 in HBV replicating cells, and sequential ChIP assays demonstrated co-occupancy with chromatin remodeling BRG1/Brahma-associated factors. BRG1 knockdown reduced SALL4 expression, whereas BRG1 overexpression increased SALL4 transcription in HBV replicating cells. We conclude demethylation of CpGs located within OCT4 and STAT3 cis-acting elements, downstream of SALL4 TSS, enables OCT4 and STAT3 binding, recruitment of BRG1, and enhanced RNA polymerase II elongation and SALL4 transcription.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A . Global cancer statistics, 2012. CA: A Cancer J Clin 2015; 65: 87–108.

    Google Scholar 

  2. Zhang J, Tam WL, Tong GQ, Wu Q, Chan HY, Soh BS et al. Sall4 modulates embryonic stem cell pluripotency and early embryonic development by the transcriptional regulation of Pou5f1. Nat Cell Biol 2006; 8: 1114–1123.

    Article  CAS  PubMed  Google Scholar 

  3. Jung YK, Jang K, Paik SS, Kwon YJ, Kim HJ, Lee KG et al. Positive immunostaining of Sal-like protein 4 is associated with poor patient survival outcome in the large and undifferentiated Korean hepatocellular carcinoma. Ann Surg Treat Res 2016; 91: 23–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Oikawa T, Kamiya A, Zeniya M, Chikada H, Hyuck AD, Yamazaki Y et al. Sal-like protein 4 (SALL4), a stem cell biomarker in liver cancers. Hepatology 2013; 57: 1469–1483.

    Article  CAS  PubMed  Google Scholar 

  5. Yong KJ, Gao C, Lim JS, Yan B, Yang H, Dimitrov T et al. Oncofetal gene SALL4 in aggressive hepatocellular carcinoma. N Engl J Med 2013; 368: 2266–2276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Oikawa T, Kamiya A, Kakinuma S, Zeniya M, Nishinakamura R, Tajiri H et al. Sall4 regulates cell fate decision in fetal hepatic stem/progenitor cells. Gastroenterology 2009; 136: 1000–1011.

    Article  CAS  PubMed  Google Scholar 

  7. Park H, Lee H, Seo AN, Cho JY, Choi YR, Yoon YS et al. SALL4 Expression in Hepatocellular Carcinomas Is Associated with EpCAM-Positivity and a Poor Prognosis. J Pathol Transl Med 2015; 49: 373–381.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Yin F, Han X, Yao SK, Wang XL, Yang HC . Importance of SALL4 in the development and prognosis of hepatocellular carcinoma. World J Gastroenterol 2016; 22: 2837–2843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zeng SS, Yamashita T, Kondo M, Nio K, Hayashi T, Hara Y et al. The transcription factor SALL4 regulates stemness of EpCAM-positive hepatocellular carcinoma. J Hepatol 2014; 60: 127–134.

    Article  CAS  PubMed  Google Scholar 

  10. Marquardt JU, Thorgeirsson SS . Sall4 in "stemness"-driven hepatocarcinogenesis. N Engl J Med 2013; 368: 2316–2318.

    Article  CAS  PubMed  Google Scholar 

  11. Bard JD, Gelebart P, Amin HM, Young LC, Ma Y, Lai R . Signal transducer and activator of transcription 3 is a transcriptional factor regulating the gene expression of SALL4. FASEB J: Off Publ Fed Am Soc ExpBiol 2009; 23: 1405–1414.

    Article  CAS  Google Scholar 

  12. Yang J, Gao C, Chai L, Ma Y . A novel SALL4/OCT4 transcriptional feedback network for pluripotency of embryonic stem cells. PLOS One 2010; 5: e10766.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ho L, Jothi R, Ronan JL, Cui K, Zhao K, Crabtree GR . An embryonic stem cell chromatin remodeling complex, esBAF, is an essential component of the core pluripotency transcriptional network. Proc Natl Acad Sci USA 2009; 106: 5187–5191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yang J, Corsello TR, Ma Y . Stem cell gene SALL4 suppresses transcription through recruitment of DNA methyltransferases. J Biol Chem 2012; 287: 1996–2005.

    Article  CAS  PubMed  Google Scholar 

  15. He J, Zhang W, Zhou Q, Zhao T, Song Y, Chai L et al. Low-expression of microRNA-107 inhibits cell apoptosis in glioma by upregulation of SALL4. Int J Biochem Cell Biol 2013; 45: 1962–1973.

    Article  CAS  PubMed  Google Scholar 

  16. Mansour AA, Gafni O, Weinberger L, Zviran A, Ayyash M, Rais Y et al. The H3K27 demethylase Utx regulates somatic and germ cell epigenetic reprogramming. Nature 2012; 488: 409–413.

    Article  CAS  PubMed  Google Scholar 

  17. Liao HF, Chen WS, Chen YH, Kao TH, Tseng YT, Lee CY et al. DNMT3L promotes quiescence in postnatal spermatogonial progenitor cells. Development 2014; 141: 2402–2413.

    Article  CAS  PubMed  Google Scholar 

  18. Nishino K, Toyoda M, Yamazaki-Inoue M, Makino H, Fukawatase Y, Chikazawa E et al. Defining hypo-methylated regions of stem cell-specific promoters in human iPS cells derived from extra-embryonic amnions and lung fibroblasts. PLOS One 2010; 5: e13017.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ladner SK, Otto MJ, Barker CS, Zaifert K, Wang GH, Guo JT et al. Inducible expression of human hepatitis B virus (HBV) in stably transfected hepatoblastoma cells: a novel system for screening potential inhibitors of HBV replication. Antimicrob Agents Chemother 1997; 41: 1715–1720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ni Y, Lempp FA, Mehrle S, Nkongolo S, Kaufman C, Falth M et al. Hepatitis B and D viruses exploit sodium taurocholate co-transporting polypeptide for species-specific entry into hepatocytes. Gastroenterology 2014; 146: 1070–1083.

    Article  CAS  PubMed  Google Scholar 

  21. Fan H, Zhang H, Pascuzzi PE, Andrisani O . Hepatitis B virus X protein induces EpCAM expression via active DNA demethylation directed by RelA in complex with EZH2 and TET2. Oncogene 2016; 35: 715–726.

    Article  CAS  PubMed  Google Scholar 

  22. Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, Zucker JP et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 2005; 122: 947–956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kumaki Y, Oda M, Okano M . QUMA: quantification tool for methylation analysis. Nucleic Acids Res 2008; 36: W170–W175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Herman JG, Graff JR, Myohanen S, Nelkin BD, Baylin SB . Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci USA 1996; 93: 9821–9826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Choi JK, Bae JB, Lyu J, Kim TY, Kim YJ . Nucleosome deposition and DNA methylation at coding region boundaries. Genome Biol 2009; 10: R89.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Liu H, Wang J, Epner EM . Cyclin D1 activation in B-cell malignancy: association with changes in histone acetylation, DNA methylation, and RNA polymerase II binding to both promoter and distal sequences. Blood 2004; 104: 2505–2513.

    Article  CAS  PubMed  Google Scholar 

  27. Veloso A, Kirkconnell KS, Magnuson B, Biewen B, Paulsen MT, Wilson TE et al. Rate of elongation by RNA polymerase II is associated with specific gene features and epigenetic modifications. Genome Res 2014; 24: 896–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Buganim Y, Markoulaki S, van Wietmarschen N, Hoke H, Wu T, Ganz K et al. The Developmental Potential of iPSCs Is Greatly Influenced by Reprogramming Factor Selection. Cell Stem Cell 2014; 15: 295–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Aravalli RN, Steer CJ, Cressman EN . Molecular mechanisms of hepatocellular carcinoma. Hepatology 2008; 48: 2047–2063.

    Article  CAS  PubMed  Google Scholar 

  30. Jones PA . Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 2012; 13: 484–492.

    Article  CAS  PubMed  Google Scholar 

  31. Adelman K, Lis JT . Promoter-proximal pausing of RNA polymerase II: emerging roles in metazoans. Nat Rev Genet 2012; 13: 720–731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ho L, Miller EL, Ronan JL, Ho WQ, Jothi R, Crabtree GR . esBAF facilitates pluripotency by conditioning the genome for LIF/STAT3 signalling and by regulating polycomb function. Nat Cell Biol 2011; 13: 903–913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kidder BL, Palmer S, Knott JG . SWI/SNF-Brg1 regulates self-renewal and occupies core pluripotency-related genes in embryonic stem cells. Stem Cells 2009; 27: 317–328.

    Article  CAS  PubMed  Google Scholar 

  34. Pan GJ, Chang ZY, Scholer HR, Pei D . Stem cell pluripotency and transcription factor Oct4. Cell Res 2002; 12: 321–329.

    Article  PubMed  Google Scholar 

  35. Pasini D, Bracken AP, Hansen JB, Capillo M, Helin K . The polycomb group protein Suz12 is required for embryonic stem cell differentiation. Mol Cell Biol 2007; 27: 3769–3779.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang H, Diab A, Fan H, Mani SK, Hullinger R, Merle P et al. PLK1 and HOTAIR accelerate proteasomal degradation of SUZ12 and ZNF198 during Hepatitis B Virus-Induced Liver Carcinogenesis. Cancer Res 2015; 75: 2363–2374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mani SK, Zhang H, Diab A, Pascuzzi PE, Lefrancois L, Fares N et al. EpCAM-regulated intramembrane proteolysis induces a cancer stem cell-like gene signature in hepatitis B virus-infected hepatocytes. J Hepatol 2016; 65: 888–898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhang H, Xing Z, Mani SK, Bancel B, Durantel D, Zoulim F et al. RNA helicase DDX5 regulates PRC2/HOTAIR function in Hepatitis B Virus infection and hepatocarcinogenesis. Hepatology 2016; 64: 1033–1048.

    Article  PubMed  Google Scholar 

  39. Li LC, Dahiya R . MethPrimer: designing primers for methylation PCRs. Bioinformatics 2002; 18: 1427–1431.

    Article  CAS  PubMed  Google Scholar 

  40. Selth LA, Gilbert C, Svejstrup JQ . RNA immunoprecipitation to determine RNA-protein associations in vivo. Cold Spring Harbor Protoc 2009; 2009: pdb prot5234.

    Article  Google Scholar 

  41. Gong F, Chiu LY, Cox B, Aymard F, Clouaire T, Leung JW et al. Screen identifies bromodomain protein ZMYND8 in chromatin recognition of transcription-associated DNA damage that promotes homologous recombination. Genes Dev 2015; 29: 197–211.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the French National Biological Resources Centre for frozen human liver tissues, obtained following approved consent from the French Liver Tumor Network Scientific Committee. The French Liver Tumor Network is funded by the Institut National de la Santé et de la Recherche Médicale (INSERM) and the Agence Nationale de la Recherche (ANR). We also thank the Biological Resources Center of Centre Léon Bérard for normal liver tissues obtained following approved consent and ministerial agreement. Financial support: This work was supported by NIH grant DK044533 to OA, and French grants PAIR-CHC 2009 (contract #2009-143, project ENELIVI) from Institute National du Cancer (INCa) to PM. Shared Resources (flow cytometry and DNA sequencing) are supported by NIH grant P30CA023168 to Purdue Center for Cancer Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O Andrisani.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, H., Cui, Z., Zhang, H. et al. DNA demethylation induces SALL4 gene re-expression in subgroups of hepatocellular carcinoma associated with Hepatitis B or C virus infection. Oncogene 36, 2435–2445 (2017). https://doi.org/10.1038/onc.2016.399

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.399

This article is cited by

Search

Quick links