Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Neomorphic mutations create therapeutic challenges in cancer

Subjects

Abstract

Oncogenesis is a pathologic process driven by genomic aberrations, including changes in nucleotide sequences. The majority of these mutational events fall into two broad categories: inactivation of tumor suppressor genes (hypomorph, antimorph or amorph) or activation of oncogenes (hypermorph). The recent surge in genome sequence data and functional genomics research has ushered in the discovery of aberrations in a third category: gain-of-novel-function mutation (neomorph). These neomorphic mutations, which can be found in both tumor suppressor genes and oncogenes, produce proteins with entirely different functions from their respective wild-type (WT) proteins and the other morphs. The unanticipated phenotypic outcomes elicited by neomorphic mutations imply that tumors with the neomorphic mutations may not respond to therapies designed to target the WT protein. Therefore, understanding the functional activities of each genomic aberration to be targeted is crucial in devising effective treatment strategies that will benefit specific cancer patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Muller HJ . Further studies on the nature and causes of gene mutations In: Jones DF (ed) Proceedings of the 6th International Congress of Genetics. Brooklyn Botanic Gardens: Menasha, WI, USA, 1932; 1: pp 213–255.

    Google Scholar 

  2. Dalziel K . Isocitrate dehydrogenase and related oxidative decarboxylases. FEBS Lett 1980; 117: K45–K55.

    Article  PubMed  Google Scholar 

  3. Jo SH, Son MK, Koh HJ, Lee SM, Song IH, Kim YO et al. Control of mitochondrial redox balance and cellular defense against oxidative damage by mitochondrial NADP+-dependent isocitrate dehydrogenase. J Biol Chem 2001; 276: 16168–16176.

    Article  CAS  PubMed  Google Scholar 

  4. Lee SM, Koh HJ, Park DC, Song BJ, Huh TL, Park JW . Cytosolic NADP(+)-dependent isocitrate dehydrogenase status modulates oxidative damage to cells. Free Radic Biol Med 2002; 32: 1185–1196.

    Article  CAS  PubMed  Google Scholar 

  5. Kim SY, Lee SM, Tak JK, Choi KS, Kwon TK, Park JW . Regulation of singlet oxygen-induced apoptosis by cytosolic NADP+-dependent isocitrate dehydrogenase. Mol Cell Biochem 2007; 302: 27–34.

    Article  CAS  PubMed  Google Scholar 

  6. Metallo CM, Gameiro PA, Bell EL, Mattaini KR, Yang J, Hiller K et al. Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature 2012; 481: 380–384.

    Article  CAS  Google Scholar 

  7. Filipp FV, Scott DA, Ronai ZA, Osterman AL, Smith JW . Reverse TCA cycle flux through isocitrate dehydrogenases 1 and 2 is required for lipogenesis in hypoxic melanoma cells. Pigment Cell Melanoma Res 2012; 25: 375–383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P et al. An integrated genomic analysis of human glioblastoma multiforme. Science 2008; 321: 1807–1812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W et al. IDH1 and IDH2 mutations in gliomas. N Engl J Med 2009; 360: 765–773.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2012; 2: 401–404.

    Article  PubMed  Google Scholar 

  11. Hartmann C, Meyer J, Balss J, Capper D, Mueller W, Christians A et al. Type and frequency of IDH1 and IDH2 mutations are related to astrocytic and oligodendroglial differentiation and age: a study of 1,010 diffuse gliomas. Acta Neuropathol 2009; 118: 469–474.

    Article  PubMed  Google Scholar 

  12. Kang MR, Kim MS, Oh JE, Kim YR, Song SY, Seo SI et al. Mutational analysis of IDH1 codon 132 in glioblastomas and other common cancers. Int J Cancer 2009; 125: 353–355.

    Article  CAS  PubMed  Google Scholar 

  13. Mardis ER, Ding L, Dooling DJ, Larson DE, McLellan MD, Chen K et al. Recurring mutations found by sequencing an acute myeloid leukemia genome. N Engl J Med 2009; 361: 1058–1066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ward PS, Patel J, Wise DR, Abdel-Wahab O, Bennett BD, Coller HA et al. The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. Cancer Cell 2010; 17: 225–234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gross S, Cairns RA, Minden MD, Driggers EM, Bittinger MA, Jang HG et al. Cancer-associated metabolite 2-hydroxyglutarate accumulates in acute myelogenous leukemia with isocitrate dehydrogenase 1 and 2 mutations. J Exp Med 2010; 207: 339–344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Xu X, Zhao J, Xu Z, Peng B, Huang Q, Arnold E et al. Structures of human cytosolic NADP-dependent isocitrate dehydrogenase reveal a novel self-regulatory mechanism of activity. J Biol Chem 2004; 279: 33946–33957.

    Article  CAS  PubMed  Google Scholar 

  17. Zhao S, Lin Y, Xu W, Jiang W, Zha Z, Wang P et al. Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-1alpha. Science 2009; 324: 261–265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dang L, White DW, Gross S, Bennett BD, Bittinger MA, Driggers EM et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 2009; 462: 739–744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hausinger RP . FeII/alpha-ketoglutarate-dependent hydroxylases and related enzymes. Crit Rev Biochem Mol Biol 2004; 39: 21–68.

    Article  CAS  PubMed  Google Scholar 

  20. Xu W, Yang H, Liu Y, Yang Y, Wang P, Kim SH et al. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of alpha-ketoglutarate-dependent dioxygenases. Cancer Cell 2011; 19: 17–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Boulahbel H, Duran RV, Gottlieb E . Prolyl hydroxylases as regulators of cell metabolism. Biochem Soc Trans 2009; 37: 291–294.

    Article  CAS  PubMed  Google Scholar 

  22. Williams SC, Karajannis MA, Chiriboga L, Golfinos JG, von Deimling A, Zagzag D . R132H-mutation of isocitrate dehydrogenase-1 is not sufficient for HIF-1alpha upregulation in adult glioma. Acta Neuropathol 2011; 121: 279–281.

    Article  PubMed  Google Scholar 

  23. Chowdhury R, Yeoh KK, Tian YM, Hillringhaus L, Bagg EA, Rose NR et al. The oncometabolite 2-hydroxyglutarate inhibits histone lysine demethylases. EMBO Rep 2011; 12: 463–469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lu C, Ward PS, Kapoor GS, Rohle D, Turcan S, Abdel-Wahab O et al. IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature 2012; 483: 474–478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Figueroa ME, Abdel-Wahab O, Lu C, Ward PS, Patel J, Shih A et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 2010; 18: 553–567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Guo JU, Su Y, Zhong C, Ming GL, Song H . Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell 2011; 145: 423–434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pope WB, Prins RM, Albert Thomas M, Nagarajan R, Yen KE, Bittinger MA et al. Non-invasive detection of 2-hydroxyglutarate and other metabolites in IDH1 mutant glioma patients using magnetic resonance spectroscopy. J Neurooncol 2012; 107: 197–205.

    Article  CAS  PubMed  Google Scholar 

  28. Choi C, Ganji SK, DeBerardinis RJ, Hatanpaa KJ, Rakheja D, Kovacs Z et al. 2-Hydroxyglutarate detection by magnetic resonance spectroscopy in IDH-mutated patients with gliomas. Nat Med 2012; 18: 624–629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kalinina J, Carroll A, Wang L, Yu Q, Mancheno DE, Wu S et al. Detection of ‘oncometabolite’ 2-hydroxyglutarate by magnetic resonance analysis as a biomarker of IDH1/2 mutations in glioma. J Mol Med (Berl) 2012; 90: 1161–1171.

    Article  CAS  Google Scholar 

  30. Andronesi OC, Kim GS, Gerstner E, Batchelor T, Tzika AA, Fantin VR et al. Detection of 2-hydroxyglutarate in IDH-mutated glioma patients by in vivo spectral-editing and 2D correlation magnetic resonance spectroscopy. Sci Transl Med 2012; 4: 116ra114.

    Article  CAS  Google Scholar 

  31. Chou WC, Hou HA, Chen CY, Tang JL, Yao M, Tsay W et al. Distinct clinical and biologic characteristics in adult acute myeloid leukemia bearing the isocitrate dehydrogenase 1 mutation. Blood 2010; 115: 2749–2754.

    Article  CAS  PubMed  Google Scholar 

  32. Wang F, Travins J, DeLaBarre B, Penard-Lacronique V, Schalm S, Hansen E et al. Targeted inhibition of mutant IDH2 in leukemia cells induces cellular differentiation. Science 2013; 340: 622–626.

    Article  CAS  PubMed  Google Scholar 

  33. Popovici-Muller J, Saunders JO, Salituro FG, Travins JM, Yan S, Zhao F et al. Discovery of the first potent inhibitors of mutant IDH1 that lower tumor 2-HG in vivo. ACS Med Chem Lett 2012; 3: 850–855.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Losman JA, Looper RE, Koivunen P, Lee S, Schneider RK, McMahon C et al. (R)-2-hydroxyglutarate is sufficient to promote leukemogenesis and its effects are reversible. Science 2013; 339: 1621–1625.

    Article  CAS  PubMed  Google Scholar 

  35. Rohle D, Popovici-Muller J, Palaskas N, Turcan S, Grommes C, Campos C et al. An inhibitor of mutant IDH1 delays growth and promotes differentiation of glioma cells. Science 2013; 340: 626–630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Okoye-Okafor UC, Bartholdy B, Cartier J, Gao EN, Pietrak B, Rendina AR et al. New IDH1 mutant inhibitors for treatment of acute myeloid leukemia. Nat Chem Biol 2015; 11: 878–886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Crunkhorn S . Cancer: novel IDH1 mutant inhibitors identified. Nat Rev Drug Discov 2015; 14: 820.

    PubMed  Google Scholar 

  38. Clark O, Yen K, Mellinghoff IK . Molecular pathways: isocitrate dehydrogenase mutations in cancer. Clin Cancer Res 2016; 22: 1837–1842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang W, Marholz LJ, Wang X . Novel scaffolds of cell-active histone demethylase inhibitors identified from high-throughput screening. J Biomol Screen 2015; 20: 821–827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lv S, Teugels E, Sadones J, Quartier E, Huylebrouck M, DUF S et al. Correlation between IDH1 gene mutation status and survival of patients treated for recurrent glioma. Anticancer Res 2011; 31: 4457–4463.

    CAS  PubMed  Google Scholar 

  41. Cantley LC . The phosphoinositide 3-kinase pathway. Science 2002; 296: 1655–1657.

    Article  CAS  PubMed  Google Scholar 

  42. Engelman JA, Luo J, Cantley LC . The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet 2006; 7: 606–619.

    Article  CAS  PubMed  Google Scholar 

  43. Vivanco I, Sawyers CL . The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer 2002; 2: 489–501.

    Article  CAS  PubMed  Google Scholar 

  44. Hennessy BT, Smith DL, Ram PT, Lu Y, Mills GB . Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat Rev Drug Discov 2005; 4: 988–1004.

    Article  CAS  PubMed  Google Scholar 

  45. Cuevas BD, Lu Y, Mao M, Zhang J, LaPushin R, Siminovitch K et al. Tyrosine phosphorylation of p85 relieves its inhibitory activity on phosphatidylinositol 3-kinase. J Biol Chem 2001; 276: 27455–27461.

    Article  CAS  PubMed  Google Scholar 

  46. Backer JM, Myers Jr MG, Shoelson SE, Chin DJ, Sun XJ, Miralpeix M et al. Phosphatidylinositol 3'-kinase is activated by association with IRS-1 during insulin stimulation. EMBO J 1992; 11: 3469–3479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yu J, Zhang Y, McIlroy J, Rordorf-Nikolic T, Orr GA, Backer JM . Regulation of the p85/p110 phosphatidylinositol 3'-kinase: stabilization and inhibition of the p110alpha catalytic subunit by the p85 regulatory subunit. Mol Cell Biol 1998; 18: 1379–1387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Luo J, Cantley LC . The negative regulation of phosphoinositide 3-kinase signaling by p85 and it's implication in cancer. Cell Cycle 2005; 4: 1309–1312.

    Article  CAS  PubMed  Google Scholar 

  49. Zack TI, Schumacher SE, Carter SL, Cherniack AD, Saksena G, Tabak B et al. Pan-cancer patterns of somatic copy number alteration. Nat Genet 2013; 45: 1134–1140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kandoth C, McLellan MD, Vandin F, Ye K, Niu B, Lu C et al. Mutational landscape and significance across 12 major cancer types. Nature 2013; 502: 333–339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Shayesteh L, Lu Y, Kuo WL, Baldocchi R, Godfrey T, Collins C et al. PIK3CA is implicated as an oncogene in ovarian cancer. Nat Genet 1999; 21: 99–102.

    Article  CAS  PubMed  Google Scholar 

  52. Samuels Y, Wang Z, Bardelli A, Silliman N, Ptak J, Szabo S et al. High frequency of mutations of the PIK3CA gene in human cancers. Science 2004; 304: 554.

    Article  CAS  PubMed  Google Scholar 

  53. Ligresti G, Militello L, Steelman LS, Cavallaro A, Basile F, Nicoletti F et al. PIK3CA mutations in human solid tumors: role in sensitivity to various therapeutic approaches. Cell Cycle 2009; 8: 1352–1358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Cheung LW, Hennessy BT, Li J, Yu S, Myers AP, Djordjevic B et al. High frequency of PIK3R1 and PIK3R2 mutations in endometrial cancer elucidates a novel mechanism for regulation of PTEN protein stability. Cancer Discov 2011; 1: 170–185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bader AG, Kang S, Vogt PK . Cancer-specific mutations in PIK3CA are oncogenic in vivo. Proc Natl Acad Sci USA 2006; 103: 1475–1479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Huang CH, Mandelker D, Schmidt-Kittler O, Samuels Y, Velculescu VE, Kinzler KW et al. The structure of a human p110alpha/p85alpha complex elucidates the effects of oncogenic PI3Kalpha mutations. Science 2007; 318: 1744–1748.

    Article  CAS  PubMed  Google Scholar 

  57. Isakoff SJ, Engelman JA, Irie HY, Luo J, Brachmann SM, Pearline RV et al. Breast cancer-associated PIK3CA mutations are oncogenic in mammary epithelial cells. Cancer Res 2005; 65: 10992–11000.

    Article  CAS  PubMed  Google Scholar 

  58. Zhao JJ, Liu Z, Wang L, Shin E, Loda MF, Roberts TM . The oncogenic properties of mutant p110alpha and p110beta phosphatidylinositol 3-kinases in human mammary epithelial cells. Proc Natl Acad Sci USA 2005; 102: 18443–18448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hao Y, Wang C, Cao B, Hirsch BM, Song J, Markowitz SD et al. Gain of interaction with IRS1 by p110alpha-helical domain mutants is crucial for their oncogenic functions. Cancer Cell 2013; 23: 583–593.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Vasudevan KM, Barbie DA, Davies MA, Rabinovsky R, McNear CJ, Kim JJ et al. AKT-independent signaling downstream of oncogenic PIK3CA mutations in human cancer. Cancer Cell 2009; 16: 21–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Stemke-Hale K, Gonzalez-Angulo AM, Lluch A, Neve RM, Kuo WL, Davies M et al. An integrative genomic and proteomic analysis of PIK3CA, PTEN, and AKT mutations in breast cancer. Cancer Res 2008; 68: 6084–6091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Dogruluk T, Tsang YH, Espitia M, Chen F, Chen T, Chong Z et al. Identification of variant-specific functions of PIK3CA by rapid phenotyping of rare mutations. Cancer Res 2015; 75: 5341–5354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Cancer Genome Atlas Research Network Cancer Genome Atlas Research Network Kandoth C Cancer Genome Atlas Research Network Schultz N Cancer Genome Atlas Research Network Cherniack AD Cancer Genome Atlas Research Network Akbani R Cancer Genome Atlas Research Network Liu Y et al. Integrated genomic characterization of endometrial carcinoma. Nature 2013; 497: 67–73.

    Article  CAS  Google Scholar 

  64. Brennan CW, Verhaak RG, McKenna A, Campos B, Noushmehr H, Salama SR et al. The somatic genomic landscape of glioblastoma. Cell 2013; 155: 462–477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Network CGA.. Comprehensive molecular characterization of human colon and rectal cancer. Nature 2012; 487: 330–337.

    Article  CAS  Google Scholar 

  66. Miled N, Yan Y, Hon WC, Perisic O, Zvelebil M, Inbar Y et al. Mechanism of two classes of cancer mutations in the phosphoinositide 3-kinase catalytic subunit. Science 2007; 317: 239–242.

    Article  CAS  PubMed  Google Scholar 

  67. Wu H, Shekar SC, Flinn RJ, El-Sibai M, Jaiswal BS, Sen KI et al. Regulation of Class IA PI 3-kinases: C2 domain-iSH2 domain contacts inhibit p85/p110alpha and are disrupted in oncogenic p85 mutants. Proc Natl Acad Sci USA 2009; 106: 20258–20263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Quayle SN, Lee JY, Cheung LW, Ding L, Wiedemeyer R, Dewan RW et al. Somatic mutations of PIK3R1 promote gliomagenesis. PLoS One 2012; 7: e49466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Harpur AG, Layton MJ, Das P, Bottomley MJ, Panayotou G, Driscoll PC et al. Intermolecular interactions of the p85alpha regulatory subunit of phosphatidylinositol 3-kinase. J Biol Chem 1999; 274: 12323–12332.

    Article  CAS  PubMed  Google Scholar 

  70. Cheung LW, Walkiewicz KW, Besong TM, Guo H, Hawke DH, Arold ST et al. Regulation of the PI3K pathway through a p85alpha monomer-homodimer equilibrium. Elife 2015; 4: e06866.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Cheung LW, Yu S, Zhang D, Li J, Ng PK, Panupinthu N et al. Naturally occurring neomorphic PIK3R1 mutations activate the MAPK pathway, dictating therapeutic response to MAPK pathway inhibitors. Cancer Cell 2014; 26: 479–494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ihle NT, Lemos Jr R, Wipf P, Yacoub A, Mitchell C, Siwak D et al. Mutations in the phosphatidylinositol-3-kinase pathway predict for antitumor activity of the inhibitor PX-866 whereas oncogenic Ras is a dominant predictor for resistance. Cancer Res 2009; 69: 143–150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wee S, Jagani Z, Xiang KX, Loo A, Dorsch M, Yao YM et al. PI3K pathway activation mediates resistance to MEK inhibitors in KRAS mutant cancers. Cancer Res 2009; 69: 4286–4293.

    Article  CAS  PubMed  Google Scholar 

  74. Shimizu T, Tolcher AW, Papadopoulos KP, Beeram M, Rasco DW, Smith LS et al. The clinical effect of the dual-targeting strategy involving PI3K/AKT/mTOR and RAS/MEK/ERK pathways in patients with advanced cancer. Clin Cancer Res 2012; 18: 2316–2325.

    Article  CAS  PubMed  Google Scholar 

  75. Pitts TM, Newton TP, Bradshaw-Pierce EL, Addison R, Arcaroli JJ, Klauck PJ et al. Dual pharmacological targeting of the MAP kinase and PI3K/mTOR pathway in preclinical models of colorectal cancer. PLoS One 2014; 9: e113037.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Alagesan B, Contino G, Guimaraes AR, Corcoran RB, Deshpande V, Wojtkiewicz GR et al. Combined MEK and PI3K inhibition in a mouse model of pancreatic cancer. Clin Cancer Res 2015; 21: 396–404.

    Article  CAS  PubMed  Google Scholar 

  77. Britten CD . PI3K and MEK inhibitor combinations: examining the evidence in selected tumor types. Cancer Chemother Pharmacol 2013; 71: 1395–1409.

    Article  CAS  PubMed  Google Scholar 

  78. Temraz S, Mukherji D, Shamseddine A . Dual Inhibition of MEK and PI3K pathway in KRAS and BRAF mutated colorectal cancers. Int J Mol Sci 2015; 16: 22976–22988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Simpson L, Parsons R . PTEN: life as a tumor suppressor. Exp Cell Res 2001; 264: 29–41.

    Article  CAS  PubMed  Google Scholar 

  80. Cai XM, Tao BB, Wang LY, Liang YL, Jin JW, Yang Y et al. Protein phosphatase activity of PTEN inhibited the invasion of glioma cells with epidermal growth factor receptor mutation type III expression. Int J Cancer 2005; 117: 905–912.

    Article  CAS  PubMed  Google Scholar 

  81. Tibarewal P, Zilidis G, Spinelli L, Schurch N, Maccario H, Gray A et al. PTEN protein phosphatase activity correlates with control of gene expression and invasion, a tumor-suppressing phenotype, but not with AKT activity. Sci Signal 2012; 5: ra18.

    Article  PubMed  CAS  Google Scholar 

  82. Freeman DJ, Li AG, Wei G, Li HH, Kertesz N, Lesche R et al. PTEN tumor suppressor regulates p53 protein levels and activity through phosphatase-dependent and -independent mechanisms. Cancer Cell 2003; 3: 117–130.

    Article  CAS  PubMed  Google Scholar 

  83. Trotman LC, Wang X, Alimonti A, Chen Z, Teruya-Feldstein J, Yang H et al. Ubiquitination regulates PTEN nuclear import and tumor suppression. Cell 2007; 128: 141–156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Gong L, Govan JM, Evans EB, Dai H, Wang E, Lee SW et al. Nuclear PTEN tumor-suppressor functions through maintaining heterochromatin structure. Cell Cycle 2015; 14: 2323–2332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Rodriguez-Escudero I, Oliver MD, Andres-Pons A, Molina M, Cid VJ, Pulido R . A comprehensive functional analysis of PTEN mutations: implications in tumor- and autism-related syndromes. Hum Mol Genet 2011; 20: 4132–4142.

    Article  CAS  PubMed  Google Scholar 

  86. Papa A, Wan L, Bonora M, Salmena L, Song MS, Hobbs RM et al. Cancer-associated PTEN mutants act in a dominant-negative manner to suppress PTEN protein function. Cell 2014; 157: 595–610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Vazquez F, Ramaswamy S, Nakamura N, Sellers WR . Phosphorylation of the PTEN tail regulates protein stability and function. Mol Cell Biol 2000; 20: 5010–5018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Costa HA, Leitner MG, Sos ML, Mavrantoni A, Rychkova A, Johnson JR et al. Discovery and functional characterization of a neomorphic PTEN mutation. Proc Natl Acad Sci USA 2015; 112: 13976–13981.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Klippel A, Kavanaugh WM, Pot D, Williams LT . A specific product of phosphatidylinositol 3-kinase directly activates the protein kinase Akt through its pleckstrin homology domain. Mol Cell Biol 1997; 17: 338–344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ma K, Cheung SM, Marshall AJ, Duronio V . PI(3,4,5)P3 and PI(3,4)P2 levels correlate with PKB/akt phosphorylation at Thr308 and Ser473, respectively; PI(3,4)P2 levels determine PKB activity. Cell Signal 2008; 20: 684–694.

    Article  CAS  PubMed  Google Scholar 

  91. DeGraffenried LA, Fulcher L, Friedrichs WE, Grunwald V, Ray RB, Hidalgo M . Reduced PTEN expression in breast cancer cells confers susceptibility to inhibitors of the PI3 kinase/Akt pathway. Ann Oncol 2004; 15: 1510–1516.

    Article  CAS  PubMed  Google Scholar 

  92. Janku F, Hong DS, Fu S, Piha-Paul SA, Naing A, Falchook GS et al. Assessing PIK3CA and PTEN in early-phase trials with PI3K/AKT/mTOR inhibitors. Cell Rep 2014; 6: 377–387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Wee S, Wiederschain D, Maira SM, Loo A, Miller C, deBeaumont R et al. PTEN-deficient cancers depend on PIK3CB. Proc Natl Acad Sci USA 2008; 105: 13057–13062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Vogelstein B, Lane D, Levine AJ . Surfing the p53 network. Nature 2000; 408: 307–310.

    Article  CAS  PubMed  Google Scholar 

  95. Lane DP, Crawford LV . T antigen is bound to a host protein in SV40-transformed cells. Nature 1979; 278: 261–263.

    Article  CAS  PubMed  Google Scholar 

  96. Linzer DI, Levine AJ . Characterization of a 54 K dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells. Cell 1979; 17: 43–52.

    Article  CAS  PubMed  Google Scholar 

  97. DeLeo AB, Jay G, Appella E, Dubois GC, Law LW, Old LJ . Detection of a transformation-related antigen in chemically induced sarcomas and other transformed cells of the mouse. Proc Natl Acad Sci USA 1979; 76: 2420–2424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Rotter V . p53, a transformation-related cellular-encoded protein, can be used as a biochemical marker for the detection of primary mouse tumor cells. Proc Natl Acad Sci USA 1983; 80: 2613–2617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Parada LF, Land H, Weinberg RA, Wolf D, Rotter V . Cooperation between gene encoding p53 tumour antigen and ras in cellular transformation. Nature 1984; 312: 649–651.

    Article  CAS  PubMed  Google Scholar 

  100. Eliyahu D, Raz A, Gruss P, Givol D, Oren M . Participation of p53 cellular tumour antigen in transformation of normal embryonic cells. Nature 1984; 312: 646–649.

    Article  CAS  PubMed  Google Scholar 

  101. Hinds P, Finlay C, Levine AJ . Mutation is required to activate the p53 gene for cooperation with the ras oncogene and transformation. J Virol 1989; 63: 739–746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Hinds PW, Finlay CA, Quartin RS, Baker SJ, Fearon ER, Vogelstein B et al. Mutant p53 DNA clones from human colon carcinomas cooperate with ras in transforming primary rat cells: a comparison of the ‘hot spot’ mutant phenotypes. Cell Growth Differ 1990; 1: 571–580.

    CAS  PubMed  Google Scholar 

  103. Levine AJ, Oren M . The first 30 years of p53: growing ever more complex. Nat Rev Cancer 2009; 9: 749–758.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Baker SJ, Fearon ER, Nigro JM, Hamilton SR, Preisinger AC, Jessup JM et al. Chromosome 17 deletions and p53 gene mutations in colorectal carcinomas. Science 1989; 244: 217–221.

    Article  CAS  PubMed  Google Scholar 

  105. Eliyahu D, Michalovitz D, Eliyahu S, Pinhasi-Kimhi O, Oren M . Wild-type p53 can inhibit oncogene-mediated focus formation. Proc Natl Acad Sci USA 1989; 86: 8763–8767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Finlay CA, Hinds PW, Levine AJ . The p53 proto-oncogene can act as a suppressor of transformation. Cell 1989; 57: 1083–1093.

    Article  CAS  PubMed  Google Scholar 

  107. Freed-Pastor WA, Prives C . Mutant p53: one name, many proteins. Genes Dev 2012; 26: 1268–1286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Vousden KH, Lu X . Live or let die: the cell's response to p53. Nat Rev Cancer 2002; 2: 594–604.

    Article  CAS  PubMed  Google Scholar 

  109. Vousden KH, Prives C . Blinded by the light: the growing complexity of p53. Cell 2009; 137: 413–431.

    Article  CAS  PubMed  Google Scholar 

  110. Riley T, Sontag E, Chen P, Levine A . Transcriptional control of human p53-regulated genes. Nat Rev Mol Cell Biol 2008; 9: 402–412.

    Article  CAS  PubMed  Google Scholar 

  111. Vousden KH, Ryan KM . p53 and metabolism. Nat Rev Cancer 2009; 9: 691–700.

    Article  CAS  PubMed  Google Scholar 

  112. Eiriksdottir G, Barkardottir RB, Agnarsson BA, Johannesdottir G, Olafsdottir K, Egilsson V et al. High incidence of loss of heterozygosity at chromosome 17p13 in breast tumours from BRCA2 mutation carriers. Oncogene 1998; 16: 21–26.

    Article  CAS  PubMed  Google Scholar 

  113. Cho Y, Gorina S, Jeffrey PD, Pavletich NP . Crystal structure of a p53 tumor suppressor–DNA complex: understanding tumorigenic mutations. Science 1994; 265: 346–355.

    Article  CAS  PubMed  Google Scholar 

  114. Petitjean A, Achatz MI, Borresen-Dale AL, Hainaut P, Olivier M . TP53 mutations in human cancers: functional selection and impact on cancer prognosis and outcomes. Oncogene 2007; 26: 2157–2165.

    Article  CAS  PubMed  Google Scholar 

  115. Chan WM, Siu WY, Lau A, Poon RY . How many mutant p53 molecules are needed to inactivate a tetramer? Mol Cell Biol 2004; 24: 3536–3551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Milner J, Medcalf EA . Cotranslation of activated mutant p53 with wild type drives the wild-type p53 protein into the mutant conformation. Cell 1991; 65: 765–774.

    Article  CAS  PubMed  Google Scholar 

  117. Dittmer D, Pati S, Zambetti G, Chu S, Teresky AK, Moore M et al. Gain of function mutations in p53. Nat Genet 1993; 4: 42–46.

    Article  CAS  PubMed  Google Scholar 

  118. Brosh R, Rotter V . When mutants gain new powers: news from the mutant p53 field. Nat Rev Cancer 2009; 9: 701–713.

    Article  CAS  PubMed  Google Scholar 

  119. Moll UM, Slade N . p63 and p73: roles in development and tumor formation. Mol Cancer Res 2004; 2: 371–386.

    CAS  PubMed  Google Scholar 

  120. Lokshin M, Li Y, Gaiddon C, Prives C . p53 and p73 display common and distinct requirements for sequence specific binding to DNA. Nucleic Acids Res 2007; 35: 340–352.

    Article  CAS  PubMed  Google Scholar 

  121. Perez CA, Ott J, Mays DJ, Pietenpol JA . p63 consensus DNA-binding site: identification, analysis and application into a p63MH algorithm. Oncogene 2007; 26: 7363–7370.

    Article  CAS  PubMed  Google Scholar 

  122. Joerger AC, Rajagopalan S, Natan E, Veprintsev DB, Robinson CV, Fersht AR . Structural evolution of p53, p63, and p73: implication for heterotetramer formation. Proc Natl Acad Sci USA 2009; 106: 17705–17710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Davison TS, Vagner C, Kaghad M, Ayed A, Caput D, Arrowsmith CH . p73 and p63 are homotetramers capable of weak heterotypic interactions with each other but not with p53. J Biol Chem 1999; 274: 18709–18714.

    Article  CAS  PubMed  Google Scholar 

  124. Gaiddon C, Lokshin M, Ahn J, Zhang T, Prives C . A subset of tumor-derived mutant forms of p53 down-regulate p63 and p73 through a direct interaction with the p53 core domain. Mol Cell Biol 2001; 21: 1874–1887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Strano S, Munarriz E, Rossi M, Cristofanelli B, Shaul Y, Castagnoli L et al. Physical and functional interaction between p53 mutants and different isoforms of p73. J Biol Chem 2000; 275: 29503–29512.

    Article  CAS  PubMed  Google Scholar 

  126. Di Como CJ, Gaiddon C, Prives C . p73 function is inhibited by tumor-derived p53 mutants in mammalian cells. Mol Cell Biol 1999; 19: 1438–1449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Strano S, Munarriz E, Rossi M, Castagnoli L, Shaul Y, Sacchi A et al. Physical interaction with Yes-associated protein enhances p73 transcriptional activity. J Biol Chem 2001; 276: 15164–15173.

    Article  CAS  PubMed  Google Scholar 

  128. Irwin MS, Kondo K, Marin MC, Cheng LS, Hahn WC, Kaelin WG Jr. . Chemosensitivity linked to p73 function. Cancer Cell 2003; 3: 403–410.

    Article  CAS  PubMed  Google Scholar 

  129. Muller PA, Caswell PT, Doyle B, Iwanicki MP, Tan EH, Karim S et al. Mutant p53 drives invasion by promoting integrin recycling. Cell 2009; 139: 1327–1341.

    Article  PubMed  Google Scholar 

  130. Adorno M, Cordenonsi M, Montagner M, Dupont S, Wong C, Hann B et al. A Mutant-p53/Smad complex opposes p63 to empower TGFbeta-induced metastasis. Cell 2009; 137: 87–98.

    Article  CAS  PubMed  Google Scholar 

  131. Di Agostino S, Strano S, Emiliozzi V, Zerbini V, Mottolese M, Sacchi A et al. Gain of function of mutant p53: the mutant p53/NF-Y protein complex reveals an aberrant transcriptional mechanism of cell cycle regulation. Cancer Cell 2006; 10: 191–202.

    Article  CAS  PubMed  Google Scholar 

  132. Imbriano C, Gurtner A, Cocchiarella F, Di Agostino S, Basile V, Gostissa M et al. Direct p53 transcriptional repression: in vivo analysis of CCAAT-containing G2/M promoters. Mol Cell Biol 2005; 25: 3737–3751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Song H, Hollstein M, Xu Y . p53 gain-of-function cancer mutants induce genetic instability by inactivating ATM. Nat Cell Biol 2007; 9: 573–580.

    Article  CAS  PubMed  Google Scholar 

  134. Maser RS, Monsen KJ, Nelms BE, Petrini JH . hMre11 and hRad50 nuclear foci are induced during the normal cellular response to DNA double-strand breaks. Mol Cell Biol 1997; 17: 6087–6096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Lee JH, Paull TT . ATM activation by DNA double-strand breaks through the Mre11–Rad50–Nbs1 complex. Science 2005; 308: 551–554.

    Article  CAS  PubMed  Google Scholar 

  136. Frum RA, Grossman SR . Mechanisms of mutant p53 stabilization in cancer. Subcell Biochem 2014; 85: 187–197.

    Article  PubMed  Google Scholar 

  137. Peng Y, Chen L, Li C, Lu W, Chen J . Inhibition of MDM2 by hsp90 contributes to mutant p53 stabilization. J Biol Chem 2001; 276: 40583–40590.

    Article  CAS  PubMed  Google Scholar 

  138. Wiech M, Olszewski MB, Tracz-Gaszewska Z, Wawrzynow B, Zylicz M, Zylicz A . Molecular mechanism of mutant p53 stabilization: the role of HSP70 and MDM2. PLoS One 2012; 7: e51426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Kramer OH, Mahboobi S, Sellmer A . Drugging the HDAC6–HSP90 interplay in malignant cells. Trends Pharmacol Sci 2014; 35: 501–509.

    Article  PubMed  CAS  Google Scholar 

  140. Li D, Marchenko ND, Moll UM . SAHA shows preferential cytotoxicity in mutant p53 cancer cells by destabilizing mutant p53 through inhibition of the HDAC6-Hsp90 chaperone axis. Cell Death Differ 2011; 18: 1904–1913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Yan W, Liu S, Xu E, Zhang J, Zhang Y, Chen X et al. Histone deacetylase inhibitors suppress mutant p53 transcription via histone deacetylase 8. Oncogene 2013; 32: 599–609.

    Article  CAS  PubMed  Google Scholar 

  142. Perez RE, Knights CD, Sahu G, Catania J, Kolukula VK, Stoler D et al. Restoration of DNA-binding and growth-suppressive activity of mutant forms of p53 via a PCAF-mediated acetylation pathway. J Cell Physiol 2010; 225: 394–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Yi YW, Kang HJ, Kim HJ, Kong Y, Brown ML, Bae I . Targeting mutant p53 by a SIRT1 activator YK-3-237 inhibits the proliferation of triple-negative breast cancer cells. Oncotarget 2013; 4: 984–994.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Selivanova G, Wiman KG . Reactivation of mutant p53: molecular mechanisms and therapeutic potential. Oncogene 2007; 26: 2243–2254.

    Article  CAS  PubMed  Google Scholar 

  145. Kravchenko JE, Ilyinskaya GV, Komarov PG, Agapova LS, Kochetkov DV, Strom E et al. Small-molecule RETRA suppresses mutant p53-bearing cancer cells through a p73-dependent salvage pathway. Proc Natl Acad Sci USA 2008; 105: 6302–6307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Yu X, Vazquez A, Levine AJ, Carpizo DR . Allele-specific p53 mutant reactivation. Cancer Cell 2012; 21: 614–625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Murre C, McCaw PS, Baltimore D . A new DNA binding and dimerization motif in immunoglobulin enhancer binding, daughterless, MyoD, and myc proteins. Cell 1989; 56: 777–783.

    Article  CAS  PubMed  Google Scholar 

  148. Weintraub H, Dwarki VJ, Verma I, Davis R, Hollenberg S, Snider L et al. Muscle-specific transcriptional activation by MyoD. Genes Dev 1991; 5: 1377–1386.

    Article  CAS  PubMed  Google Scholar 

  149. Tapscott SJ, Weintraub H . MyoD and the regulation of myogenesis by helix-loop-helix proteins. J Clin Invest 1991; 87: 1133–1138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Antwerp ME Van, Chen DG, Chang C, Prochownik EV . A point mutation in the MyoD basic domain imparts c-Myc-like properties. Proc Natl Acad Sci USA 1992; 89: 9010–9014.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Tapscott SJ, Davis RL, Thayer MJ, Cheng PF, Weintraub H, Lassar AB . MyoD1: a nuclear phosphoprotein requiring a Myc homology region to convert fibroblasts to myoblasts. Science 1988; 242: 405–411.

    Article  CAS  PubMed  Google Scholar 

  152. Kohsaka S, Shukla N, Ameur N, Ito T, Ng CK, Wang L et al. A recurrent neomorphic mutation in MYOD1 defines a clinically aggressive subset of embryonal rhabdomyosarcoma associated with PI3K–AKT pathway mutations. Nat Genet 2014; 46: 595–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Liu J, Guzman MA, Pezanowski D, Patel D, Hauptman J, Keisling M et al. FOXO1–FGFR1 fusion and amplification in a solid variant of alveolar rhabdomyosarcoma. Mod Pathol 2011; 24: 1327–1335.

    Article  CAS  PubMed  Google Scholar 

  154. Sorensen PH, Lynch JC, Qualman SJ, Tirabosco R, Lim JF, Maurer HM et al. PAX3-FKHR and PAX7-FKHR gene fusions are prognostic indicators in alveolar rhabdomyosarcoma: a report from the children's oncology group. J Clin Oncol 2002; 20: 2672–2679.

    Article  CAS  PubMed  Google Scholar 

  155. Shukla N, Ameur N, Yilmaz I, Nafa K, Lau CY, Marchetti A et al. Oncogene mutation profiling of pediatric solid tumors reveals significant subsets of embryonal rhabdomyosarcoma and neuroblastoma with mutated genes in growth signaling pathways. Clin Cancer Res 2012; 18: 748–757.

    Article  CAS  PubMed  Google Scholar 

  156. Castellano G, Torrisi E, Ligresti G, Malaponte G, Militello L, Russo AE et al. The involvement of the transcription factor Yin Yang 1 in cancer development and progression. Cell Cycle 2009; 8: 1367–1372.

    Article  CAS  PubMed  Google Scholar 

  157. Gordon S, Akopyan G, Garban H, Bonavida B . Transcription factor YY1: structure, function, and therapeutic implications in cancer biology. Oncogene 2006; 25: 1125–1142.

    Article  CAS  PubMed  Google Scholar 

  158. Deng Z, Wan M, Cao P, Rao A, Cramer SD, Sui G . Yin Yang 1 regulates the transcriptional activity of androgen receptor. Oncogene 2009; 28: 3746–3757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Seligson D, Horvath S, Huerta-Yepez S, Hanna S, Garban H, Roberts A et al. Expression of transcription factor Yin Yang 1 in prostate cancer. Int J Oncol 2005; 27: 131–141.

    CAS  PubMed  Google Scholar 

  160. Matsumura N, Huang Z, Baba T, Lee PS, Barnett JC, Mori S et al. Yin yang 1 modulates taxane response in epithelial ovarian cancer. Mol Cancer Res 2009; 7: 210–220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Allouche A, Nolens G, Tancredi A, Delacroix L, Mardaga J, Fridman V et al. The combined immunodetection of AP-2alpha and YY1 transcription factors is associated with ERBB2 gene overexpression in primary breast tumors. Breast Cancer Res 2008; 10: R9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Baritaki S, Sifakis S, Huerta-Yepez S, Neonakis IK, Soufla G, Bonavida B et al. Overexpression of VEGF and TGF-beta1 mRNA in Pap smears correlates with progression of cervical intraepithelial neoplasia to cancer: implication of YY1 in cervical tumorigenesis and HPV infection. Int J Oncol 2007; 31: 69–79.

    CAS  PubMed  Google Scholar 

  163. Grubach L, Juhl-Christensen C, Rethmeier A, Olesen LH, Aggerholm A, Hokland P et al. Gene expression profiling of Polycomb, Hox and Meis genes in patients with acute myeloid leukaemia. Eur J Haematol 2008; 81: 112–122.

    Article  CAS  PubMed  Google Scholar 

  164. de Nigris F, Botti C, de Chiara A, Rossiello R, Apice G, Fazioli F et al. Expression of transcription factor Yin Yang 1 in human osteosarcomas. Eur J Cancer 2006; 42: 2420–2424.

    Article  CAS  PubMed  Google Scholar 

  165. Castellano G, Torrisi E, Ligresti G, Nicoletti F, Malaponte G, Traval S et al. Yin Yang 1 overexpression in diffuse large B-cell lymphoma is associated with B-cell transformation and tumor progression. Cell Cycle 2010; 9: 557–563.

    Article  CAS  PubMed  Google Scholar 

  166. Riggs KJ, Saleque S, Wong KK, Merrell KT, Lee JS, Shi Y et al. Yin-yang 1 activates the c-myc promoter. Mol Cell Biol 1993; 13: 7487–7495.

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Shrivastava A, Yu J, Artandi S, Calame K . YY1 and c-Myc associate in vivo in a manner that depends on c-Myc levels. Proc Natl Acad Sci USA 1996; 93: 10638–10641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Begon DY, Delacroix L, Vernimmen D, Jackers P, Winkler R . Yin Yang 1 cooperates with activator protein 2 to stimulate ERBB2 gene expression in mammary cancer cells. J Biol Chem 2005; 280: 24428–24434.

    Article  CAS  PubMed  Google Scholar 

  169. Garban HJ, Bonavida B . Nitric oxide inhibits the transcription repressor Yin-Yang 1 binding activity at the silencer region of the Fas promoter: a pivotal role for nitric oxide in the up-regulation of Fas gene expression in human tumor cells. J Immunol 2001; 167: 75–81.

    Article  CAS  PubMed  Google Scholar 

  170. Sui G, Affar el B, Shi Y, Brignone C, Wall NR, Yin P et al. Yin Yang 1 is a negative regulator of p53. Cell 2004; 117: 859–872.

    Article  CAS  PubMed  Google Scholar 

  171. Yakovleva T, Kolesnikova L, Vukojevic V, Gileva I, Tan-No K, Austen M et al. YY1 binding to a subset of p53 DNA-target sites regulates p53-dependent transcription. Biochem Biophys Res Commun 2004; 318: 615–624.

    Article  CAS  PubMed  Google Scholar 

  172. Gronroos E, Terentiev AA, Punga T, Ericsson J . YY1 inhibits the activation of the p53 tumor suppressor in response to genotoxic stress. Proc Natl Acad Sci USA 2004; 101: 12165–12170.

    Article  PubMed  PubMed Central  Google Scholar 

  173. Cao Y, Gao Z, Li L, Jiang X, Shan A, Cai J et al. Whole exome sequencing of insulinoma reveals recurrent T372R mutations in YY1. Nat Commun 2013; 4: 2810.

    Article  PubMed  CAS  Google Scholar 

  174. Cromer MK, Choi M, Nelson-Williams C, Fonseca AL, Kunstman JW, Korah RM et al. Neomorphic effects of recurrent somatic mutations in Yin Yang 1 in insulin-producing adenomas. Proc Natl Acad Sci USA 2015; 112: 4062–4067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Jiao Y, Shi C, Edil BH, de Wilde RF, Klimstra DS, Maitra A et al. DAXX/ATRX, MEN1, and mTOR pathway genes are frequently altered in pancreatic neuroendocrine tumors. Science 2011; 331: 1199–1203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Jones S, Zhang X, Parsons DW, Lin JC, Leary RJ, Angenendt P et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 2008; 321: 1801–1806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Creixell P, Schoof EM, Simpson CD, Longden J, Miller CJ, Lou HJ et al. Kinome-wide decoding of network-attacking mutations rewiring cancer signaling. Cell 2015; 163: 202–217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Creixell P, Palmeri A, Miller CJ, Lou HJ, Santini CC, Nielsen M et al. Unmasking determinants of specificity in the human kinome. Cell 2015; 163: 187–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We apologize to colleagues whose work was not cited owing to space constraints or our oversight. This work was supported by U54HG008100, U01CA168394, P50 CA098258, P50CA083639, the Adelson Medical Research Foundation and HKU Seed Funding Programme for Basic Research (201606159001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G B Mills or L W T Cheung.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takiar, V., Ip, C., Gao, M. et al. Neomorphic mutations create therapeutic challenges in cancer. Oncogene 36, 1607–1618 (2017). https://doi.org/10.1038/onc.2016.312

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.312

This article is cited by

Search

Quick links