Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

FoxF1 and FoxF2 transcription factors synergistically promote rhabdomyosarcoma carcinogenesis by repressing transcription of p21Cip1 CDK inhibitor

Abstract

The role of Forkhead Box F1 (FoxF1) transcription factor in carcinogenesis is not well characterized. Depending on tissue and histological type of cancer, FoxF1 has been shown to be either an oncogene or a tumor suppressor. Alveolar rhabdomyosarcoma (RMS) is the most aggressive pediatric soft-tissue sarcoma. Although FoxF1 is highly expressed in alveolar RMS, the functional role of FoxF1 in RMS is unknown. The present study demonstrates that expression of FoxF1 and its closely related transcription factor FoxF2 are essential for RMS tumor growth. Depletion of FoxF1 or FoxF2 in RMS cells decreased tumor growth in orthotopic mouse models of RMS. The decreased tumorigenesis was associated with reduced tumor cell proliferation. Cell cycle regulatory proteins Cdk2, Cdk4/6, Cyclin D1 and Cyclin E2 were decreased in FoxF1- and FoxF2-deficient RMS tumors. Depletion of either FoxF1 or FoxF2 delayed G1–S cell cycle progression, decreased levels of phosphorylated retinoblastoma protein (Rb) and increased protein levels of the CDK inhibitors, p21Cip1 and p27Kip1. Depletion of both FoxF1 and FoxF2 in tumor cells completely abrogated RMS tumor growth in mice. Overexpression of either FoxF1 or FoxF2 in tumor cells was sufficient to increase tumor growth in orthotopic RMS mouse model. FoxF1 and FoxF2 directly bound to and repressed transcriptional activity of p21Cip1 promoter through −556/−545 bp region, but did not affect p27Kip1 transcription. Knockdown of p21Cip1 restored cell cycle progression in the FoxF1- or FoxF2-deficient tumor cells. Altogether, FoxF1 and FoxF2 promoted RMS tumorigenesis by inducing tumor cell proliferation via transcriptional repression of p21Cip1 gene promoter. Because of the robust oncogenic activity in RMS tumors, FoxF1 and FoxF2 may represent promising targets for anti-tumor therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. McDowell HP . Update on childhood rhabdomyosarcoma. Arch Dis Child 2003; 88: 354–357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Merlino G, Helman LJ . Rhabdomyosarcoma—working out the pathways. Oncogene 1999; 18: 5340–5348.

    Article  CAS  PubMed  Google Scholar 

  3. Hayes-Jordan A, Andrassy R . Rhabdomyosarcoma in children. Curr Opin Pediatr 2009; 21: 373–378.

    Article  PubMed  Google Scholar 

  4. Breneman JC, Lyden E, Pappo AS, Link MP, Anderson JR, Parham DM et al. Prognostic factors and clinical outcomes in children and adolescents with metastatic rhabdomyosarcoma—a report from the Intergroup Rhabdomyosarcoma Study IV. J Clin Oncol 2003; 21: 78–84.

    Article  PubMed  Google Scholar 

  5. Qualman SJ, Morotti RA . Risk assignment in pediatric soft-tissue sarcomas: an evolving molecular classification. Curr Oncol Rep 2002; 4: 123–130.

    Article  PubMed  Google Scholar 

  6. Galili N, Davis RJ, Fredericks WJ, Mukhopadhyay S, Rauscher FJ 3rd, Emanuel BS et al. Fusion of a fork head domain gene to PAX3 in the solid tumour alveolar rhabdomyosarcoma. Nat Genet 1993; 5: 230–235.

    Article  CAS  PubMed  Google Scholar 

  7. Davis RJ, D'Cruz CM, Lovell MA, Biegel JA, Barr FG . Fusion of PAX7 to FKHR by the variant t(1;13)(p36;q14) translocation in alveolar rhabdomyosarcoma. Cancer Res 1994; 54: 2869–2872.

    CAS  PubMed  Google Scholar 

  8. Lae M, Ahn EH, Mercado GE, Chuai S, Edgar M, Pawel BR et al. Global gene expression profiling of PAX-FKHR fusion-positive alveolar and PAX-FKHR fusion-negative embryonal rhabdomyosarcomas. J Pathol 2007; 212: 143–151.

    Article  CAS  PubMed  Google Scholar 

  9. Wachtel M, Dettling M, Koscielniak E, Stegmaier S, Treuner J, Simon-Klingenstein K et al. Gene expression signatures identify rhabdomyosarcoma subtypes and detect a novel t(2;2)(q35;p23) translocation fusing PAX3 to NCOA1. Cancer Res 2004; 64: 5539–5545.

    Article  CAS  PubMed  Google Scholar 

  10. Davicioni E, Anderson MJ, Finckenstein FG, Lynch JC, Qualman SJ, Shimada H et al. Molecular classification of rhabdomyosarcoma—genotypic and phenotypic determinants of diagnosis: a report from the Children’s Oncology Group. Am J Pathol 2009; 174: 550–564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Armeanu-Ebinger S, Bonin M, Habig K, Poremba C, Koscielniak E, Godzinski J et al. Differential expression of invasion promoting genes in childhood rhabdomyosarcoma. Int J Oncol 2011; 38: 993–1000.

    CAS  PubMed  Google Scholar 

  12. Kalin TV, Ustiyan V, Kalinichenko VV . Multiple faces of FoxM1 transcription factor: lessons from transgenic mouse models. Cell Cycle 2011; 10: 396–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. McLin VA, Henning SJ, Jamrich M . The role of the visceral mesoderm in the development of the gastrointestinal tract. Gastroenterology 2009; 136: 2074–2091.

    Article  CAS  PubMed  Google Scholar 

  14. Ormestad M, Astorga J, Carlsson P . Differences in the embryonic expression patterns of mouse Foxf1 and -2 match their distinct mutant phenotypes. Dev Dyn 2004; 229: 328–333.

    Article  CAS  PubMed  Google Scholar 

  15. Hellqvist M, Mahlapuu M, Samuelsson L, Enerback S, Carlsson P . Differential activation of lung-specific genes by two forkhead proteins, FREAC-1 and FREAC-2. J Biol Chem 1996; 271: 4482–4490.

    Article  CAS  PubMed  Google Scholar 

  16. Peterson RS, Lim L, Ye H, Zhou H, Overdier DG, Costa RH . The winged helix transcriptional activator HFH-8 is expressed in the mesoderm of the primitive streak stage of mouse embryos and its cellular derivatives. Mech Dev 1997; 69: 53–69.

    Article  CAS  PubMed  Google Scholar 

  17. Mahlapuu M, Ormestad M, Enerback S, Carlsson P . The forkhead transcription factor Foxf1 is required for differentiation of extra-embryonic and lateral plate mesoderm. Development 2001; 128: 155–166.

    CAS  PubMed  Google Scholar 

  18. Kalinichenko VV, Lim L, Beer-Stoltz D, Shin B, Rausa FM, Clark J et al. Defects in pulmonary vasculature and perinatal lung hemorrhage in mice heterozygous null for the forkhead box f1 transcription factor. Dev Biol 2001; 235: 489–506.

    Article  CAS  PubMed  Google Scholar 

  19. Kalinichenko VV, Zhou Y, Bhattacharyya D, Kim W, Shin B, Bambal K et al. Haploinsufficiency of the mouse forkhead box f1 gene causes defects in gall bladder development. J Biol Chem 2002; 277: 12369–12374.

    Article  CAS  PubMed  Google Scholar 

  20. Kalinichenko VV, Gusarova GA, Shin B, Costa R . The forkhead box F1 transcription factor is expressed in brain and head mesenchyme during mouse embryonic development. Gene Expr Patterns 2003; 3: 153–158.

    Article  CAS  PubMed  Google Scholar 

  21. Ren X, Ustiyan V, Pradhan A, Cai Y, Havrilak JA, Bolte CS et al. FOXF1 transcription factor is required for formation of embryonic vasculature by regulating VEGF signaling in endothelial cells. Circ Res 2014; 115: 709–720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kalinichenko VV, Bhattacharyya D, Zhou Y, Gusarova GA, Kim W, Shin B et al. Foxf1 +/- mice exhibit defective stellate cell activation and abnormal liver regeneration following CCl4 injury. Hepatology 2003; 37: 107–117.

    Article  CAS  PubMed  Google Scholar 

  23. Lo PK, Lee JS, Liang X, Han L, Mori T, Fackler MJ et al. Epigenetic inactivation of the potential tumor suppressor gene FOXF1 in breast cancer. Cancer Res 2010; 70: 6047–6058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lo PK, Lee JS, Sukumar S . The p53-p21WAF1 checkpoint pathway plays a protective role in preventing DNA rereplication induced by abrogation of FOXF1 function. Cell Signal 2012; 24: 316–324.

    Article  CAS  PubMed  Google Scholar 

  25. Watson JE, Doggett NA, Albertson DG, Andaya A, Chinnaiyan A, van Dekken H et al. Integration of high-resolution array comparative genomic hybridization analysis of chromosome 16q with expression array data refines common regions of loss at 16q23-qter and identifies underlying candidate tumor suppressor genes in prostate cancer. Oncogene 2004; 23: 3487–3494.

    Article  CAS  PubMed  Google Scholar 

  26. Gialmanidis IP, Bravou V, Petrou I, Kourea H, Mathioudakis A, Lilis I et al. Expression of Bmi1, FoxF1, Nanog, and gamma-catenin in relation to hedgehog signaling pathway in human non-small-cell lung cancer. Lung 2013; 191: 511–521.

    Article  CAS  PubMed  Google Scholar 

  27. Wendling DS, Luck C, von Schweinitz D, Kappler R . Characteristic overexpression of the forkhead box transcription factor Foxf1 in Patched-associated tumors. Int J Mol Med 2008; 22: 787–792.

    CAS  PubMed  Google Scholar 

  28. Wei HJ, Nickoloff JA, Chen WH, Liu HY, Lo WC, Chang YT et al. FOXF1 mediates mesenchymal stem cell fusion-induced reprogramming of lung cancer cells. Oncotarget 2014; 5: 9514–9529.

    PubMed  PubMed Central  Google Scholar 

  29. Nilsson J, Helou K, Kovacs A, Bendahl PO, Bjursell G, Ferno M et al. Nuclear Janus-activated kinase 2/nuclear factor 1-C2 suppresses tumorigenesis and epithelial-to-mesenchymal transition by repressing Forkhead box F1. Cancer Res 2010; 70: 2020–2029.

    Article  CAS  PubMed  Google Scholar 

  30. Aitola M, Carlsson P, Mahlapuu M, Enerback S, Pelto-Huikko M . Forkhead transcription factor FoxF2 is expressed in mesodermal tissues involved in epithelio-mesenchymal interactions. Dev Dyn 2000; 218: 136–149.

    Article  CAS  PubMed  Google Scholar 

  31. McLin VA, Shah R, Desai NP, Jamrich M . Identification and gastrointestinal expression of Xenopus laevis FoxF2. Int J Dev Biol 2010; 54: 919–924.

    Article  CAS  PubMed  Google Scholar 

  32. Kundu ST, Byers LA, Peng DH, Roybal JD, Diao L, Wang J et al. The miR-200 family and the miR-183~96~182 cluster target Foxf2 to inhibit invasion and metastasis in lung cancers. Oncogene 2015; 35: 173–186.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kong PZ, Yang F, Li L, Li XQ, Feng YM . Decreased FOXF2 mRNA expression indicates early-onset metastasis and poor prognosis for breast cancer patients with histological grade II tumor. PLoS One 2013; 8: e61591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nik AM, Reyahi A, Ponten F, Carlsson P . Foxf2 in intestinal fibroblasts reduces numbers of Lgr5(+) stem cells and adenoma formation by inhibiting Wnt signaling. Gastroenterology 2013; 144: 1001–1011.

    Article  CAS  PubMed  Google Scholar 

  35. Pierrou S, Hellqvist M, Samuelsson L, Enerback S, Carlsson P . Cloning and characterization of seven human forkhead proteins: binding site specificity and DNA bending. EMBO J 1994; 13: 5002–5012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Balli D, Ren X, Chou FS, Cross E, Zhang Y, Kalinichenko VV et al. Foxm1 transcription factor is required for macrophage migration during lung inflammation and tumor formation. Oncogene 2011; 31: 3875–3888.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hosoi H, Sugimoto T, Hayashi Y, Inaba T, Horii Y, Morioka H et al. Differential expression of myogenic regulatory genes, MyoD1 and myogenin, in human rhabdomyosarcoma sublines. Int J Cancer 1992; 50: 977–983.

    Article  CAS  PubMed  Google Scholar 

  38. Abukhdeir AM, Park BH . P21 and p27: roles in carcinogenesis and drug resistance. Expert Rev Mol Med 2008; 10: e19.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Adams PD . Regulation of the retinoblastoma tumor suppressor protein by cyclin/cdks. Biochim Biophys Acta 2001; 1471: M123–M133.

    CAS  PubMed  Google Scholar 

  40. Lim S, Kaldis P . Cdks, cyclins and CKIs: roles beyond cell cycle regulation. Development 2013; 140: 3079–3093.

    Article  CAS  PubMed  Google Scholar 

  41. Bolte C, Ren X, Tomley T, Ustiyan V, Pradhan A, Hoggatt A et al. Forkhead box F2 regulation of platelet-derived growth factor and myocardin/serum response factor signaling is essential for intestinal development. J Biol Chem 2015; 290: 7563–7575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pappo I, Meirshon I, Karni T, Siegelmann-Danielli N, Stahl-Kent V, Sandbank J et al. The characteristics of malignant breast tumors in hormone replacement therapy users versus nonusers. Ann Surg Oncol 2004; 11: 52–58.

    Article  PubMed  Google Scholar 

  43. Tamura M, Sasaki Y, Koyama R, Takeda K, Idogawa M, Tokino T . Forkhead transcription factor FOXF1 is a novel target gene of the p53 family and regulates cancer cell migration and invasiveness. Oncogene 2014; 33: 4837–4846.

    Article  CAS  PubMed  Google Scholar 

  44. Zhang P, Wong C, Liu D, Finegold M, Harper JW, Elledge SJ . p21(CIP1) and p57(KIP2) control muscle differentiation at the myogenin step. Genes Dev 1999; 13: 213–224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Weigel BJ, Rodeberg DA, Krieg AM, Blazar BR . CpG oligodeoxynucleotides potentiate the antitumor effects of chemotherapy or tumor resection in an orthotopic murine model of rhabdomyosarcoma. Clin Cancer Res 2003; 9: 3105–3114.

    CAS  PubMed  Google Scholar 

  46. Douglass EC, Valentine M, Etcubanas E, Parham D, Webber BL, Houghton PJ et al. A specific chromosomal abnormality in rhabdomyosarcoma. Cytogenet Cell Genet 1987; 45: 148–155.

    Article  CAS  PubMed  Google Scholar 

  47. Singh TR, Saro D, Ali AM, Zheng XF, Du CH, Killen MW et al. MHF1-MHF2, a histone-fold-containing protein complex, participates in the Fanconi anemia pathway via FANCM. Mol Cell 2010; 37: 879–886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cheng XH, Black M, Ustiyan V, Le T, Fulford L, Sridharan A et al. SPDEF inhibits prostate carcinogenesis by disrupting a positive feedback loop in regulation of the foxm1 oncogene. PLoS Genet 2014; 10: e1004656.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Wang IC, Meliton L, Tretiakova M, Costa RH, Kalinichenko VV, Kalin TV . Transgenic expression of the forkhead box M1 transcription factor induces formation of lung tumors. Oncogene 2008; 27: 4137–4149.

    Article  CAS  PubMed  Google Scholar 

  50. Kalin TV, Wang IC, Ackerson TJ, Major ML, Detrisac CJ, Kalinichenko VV et al. Increased levels of the FoxM1 transcription factor accelerate development and progression of prostate carcinomas in both TRAMP and LADY transgenic mice. Cancer Res 2006; 66: 1712–1720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wang IC, Meliton L, Ren X, Zhang Y, Balli D, Snyder J et al. Deletion of Forkhead Box M1 transcription factor from respiratory epithelial cells inhibits pulmonary tumorigenesis. PLoS One 2009; 4: e6609.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Balli D, Ustiyan V, Zhang Y, Wang IC, Masino AJ, Ren X et al. Foxm1 transcription factor is required for lung fibrosis and epithelial-to-mesenchymal transition. EMBO J 2013; 32: 231–244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Balli D, Zhang Y, Snyder J, Kalinichenko VV, Kalin TV . Endothelial cell-specific deletion of transcription factor FoxM1 increases urethane-induced lung carcinogenesis. Cancer Res 2011; 71: 40–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kalin TV, Meliton L, Meliton AY, Zhu X, Whitsett JA, Kalinichenko VV . Pulmonary mastocytosis and enhanced lung inflammation in mice heterozygous null for the Foxf1 gene. Am J Respir Cell Mol Biol 2008; 39: 390–399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Research Grant from the American Cancer Society 125011-RSG-13-325-01-CSM (to TVK), NIH grants R01 CA142724 (to TVK) and R01 HL84151 (to VVK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T V Kalin.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Milewski, D., Pradhan, A., Wang, X. et al. FoxF1 and FoxF2 transcription factors synergistically promote rhabdomyosarcoma carcinogenesis by repressing transcription of p21Cip1 CDK inhibitor. Oncogene 36, 850–862 (2017). https://doi.org/10.1038/onc.2016.254

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.254

This article is cited by

Search

Quick links