Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Upregulation of the oncoprotein SET determines poor clinical outcomes in hepatocellular carcinoma and shows therapeutic potential

Abstract

The SET protein is a potent inhibitor of protein phosphatase 2A (PP2A). Here, we report the oncogenic role of SET in hepatocarcinogenesis, clinical aggressiveness and anti-hepatocellular carcinoma (HCC) therapeutics. By analyzing samples obtained from 147 HCC patients, we found that SET overexpression was detected specifically in 30.6% HCC tumor samples, and was significantly associated with worse clinical features and high p-Akt expression in HCC tumors. Co-expression of SET and Akt predicted shorter post-operative recurrence-free survival in this cohort (P=0.045). Furthermore, SET was significantly associated with cell growth and hepatosphere formation. To elucidate the anti-HCC potential of targeting SET, we generated a novel SET antagonist, EMQA (N4-(3-ethynylphenyl)-6,7-dimethoxy-N2-(4-phenoxyphenyl) quinazoline-2,4-diamine). EMQA enhanced PP2A activity via disrupting SET-PP2Ac (catalytic domain of PP2A) binding in HCC cells, which restored PP2A-mediated p-Akt downregulation and promoted HCC cell death. In HCC cells or recombinant proteins expressing the N- and C- truncated forms of SET, only the C-terminal SET was required for EMQA targeting. Furthermore, combining sorafenib and EMQA showed good synergism in inhibiting HCC survival. Our findings suggested the oncogenic role of SET and the adverse prognostic value of SET overexpression in HCC. This alteration defines a subgroup of HCC patients who could benefit from SET antagonists, such as EMQA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. El-Serag HB . Hepatocellular carcinoma. New Engl J Med 2011; 365: 1118–1127.

    Article  CAS  PubMed  Google Scholar 

  2. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A . Global cancer statistics, 2012. CA Cancer J Clin 2015; 65: 87–108.

    Article  PubMed  Google Scholar 

  3. Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 2008; 359: 378–390.

    Article  CAS  PubMed  Google Scholar 

  4. Cheng AL, Kang YK, Chen Z, Tsao CJ, Qin S, Kim JS et al. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol 2009; 10: 25–34.

    Article  CAS  PubMed  Google Scholar 

  5. Bononi A, Agnoletto C, De Marchi E, Marchi S, Patergnani S, Bonora M et al. Protein kinases and phosphatases in the control of cell fate. Enzyme Res 2011; 2011: 329098.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Perrotti D, Neviani P . Protein phosphatase 2A: a target for anticancer therapy. Lancet Oncol 2013; 14: e229–e238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Suganuma M, Fujiki H, Suguri H, Yoshizawa S, Hirota M, Nakayasu M et al. Okadaic acid: an additional non-phorbol-12-tetradecanoate-13-acetate-type tumor promoter. Proc Natl Acad Sci USA 1988; 85: 1768–1771.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Haystead TA, Sim AT, Carling D, Honnor RC, Tsukitani Y, Cohen P et al. Effects of the tumour promoter okadaic acid on intracellular protein phosphorylation and metabolism. Nature 1989; 337: 78–81.

    Article  CAS  PubMed  Google Scholar 

  9. Arroyo JD, Hahn WC . Involvement of PP2A in viral and cellular transformation. Oncogene 2005; 24: 7746–7755.

    Article  CAS  PubMed  Google Scholar 

  10. Chen W, Possemato R, Campbell KT, Plattner CA, Pallas DC, Hahn WC . Identification of specific PP2A complexes involved in human cell transformation. Cancer Cell 2004; 5: 127–136.

    Article  CAS  PubMed  Google Scholar 

  11. Mumby M . PP2A: unveiling a reluctant tumor suppressor. Cell 2007; 130: 21–24.

    Article  CAS  PubMed  Google Scholar 

  12. Junttila MR, Puustinen P, Niemela M, Ahola R, Arnold H, Bottzauw T et al. CIP2A inhibits PP2A in human malignancies. Cell 2007; 130: 51–62.

    Article  CAS  PubMed  Google Scholar 

  13. Cristobal I, Rincon R, Manso R, Carames C, Zazo S, Madoz-Gurpide J et al. Deregulation of the PP2A inhibitor SET shows promising therapeutic implications and determines poor clinical outcome in patients with metastatic colorectal cancer. Clin Cancer Res 2015; 21: 347–356.

    Article  CAS  PubMed  Google Scholar 

  14. Chen W, Wang Z, Jiang C, Ding Y . PP2A-mediated anticancer therapy. Gastroenterol Res Pract 2013; 2013: 675429.

    PubMed  PubMed Central  Google Scholar 

  15. Carlson SG, Eng E, Kim EG, Perlman EJ, Copeland TD, Ballermann BJ . Expression of SET, an inhibitor of protein phosphatase 2A, in renal development and Wilms' tumor. J Am Soc Nephrol 1998; 9: 1873–1880.

    CAS  PubMed  Google Scholar 

  16. Li M, Makkinje A, Damuni Z . The myeloid leukemia-associated protein SET is a potent inhibitor of protein phosphatase 2A. J Biol Chem 1996; 271: 11059–11062.

    Article  CAS  PubMed  Google Scholar 

  17. Cristobal I, Garcia-Orti L, Cirauqui C, Cortes-Lavaud X, Garcia-Sanchez MA, Calasanz MJ et al. Overexpression of SET is a recurrent event associated with poor outcome and contributes to protein phosphatase 2A inhibition in acute myeloid leukemia. Haematologica 2012; 97: 543–550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Janghorban M, Farrell AS, Allen-Petersen BL, Pelz C, Daniel CJ, Oddo J et al. Targeting c-MYC by antagonizing PP2A inhibitors in breast cancer. Proc Natl Acad Sci USA 2014; 111: 9157–9162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu GP, Wei W, Zhou X, Zhang Y, Shi HH, Yin J et al. I(2)(PP2A) regulates p53 and Akt correlatively and leads the neurons to abort apoptosis. Neurobiol Aging 2012; 33: 254–264.

    Article  PubMed  Google Scholar 

  20. Christensen DJ, Ohkubo N, Oddo J, Van Kanegan MJ, Neil J, Li F et al. Apolipoprotein E and peptide mimetics modulate inflammation by binding the SET protein and activating protein phosphatase 2A. J Immunol (Baltimore, MD: 1950) 2011; 186: 2535–2542.

    Article  CAS  Google Scholar 

  21. Leopoldino AM, Squarize CH, Garcia CB, Almeida LO, Pestana CR, Polizello AC et al. Accumulation of the SET protein in HEK293T cells and mild oxidative stress: cell survival or death signaling. Mol Cell Biochem 2012; 363: 65–74.

    Article  CAS  PubMed  Google Scholar 

  22. Neviani P, Santhanam R, Trotta R, Notari M, Blaser BW, Liu S et al. The tumor suppressor PP2A is functionally inactivated in blast crisis CML through the inhibitory activity of the BCR/ABL-regulated SET protein. Cancer Cell 2005; 8: 355–368.

    Article  CAS  PubMed  Google Scholar 

  23. Junttila MR, Li SP, Westermarck J . Phosphatase-mediated crosstalk between MAPK signaling pathways in the regulation of cell survival. FASEB J 2008; 22: 954–965.

    Article  CAS  PubMed  Google Scholar 

  24. Al-Murrani SW, Woodgett JR, Damuni Z . Expression of I2PP2A, an inhibitor of protein phosphatase 2A, induces c-Jun and AP-1 activity. Biochem J 1999; 341: 293–298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fukukawa C, Shima H, Tanuma N, Ogawa K, Kikuchi K . Up-regulation of I-2(PP2A)/SET gene expression in rat primary hepatomas and regenerating livers. Cancer Lett 2000; 161: 89–95.

    Article  CAS  PubMed  Google Scholar 

  26. Switzer CH, Cheng RY, Vitek TM, Christensen DJ, Wink DA, Vitek MP . Targeting SET/I(2)PP2A oncoprotein functions as a multi-pathway strategy for cancer therapy. Oncogene 2011; 30: 2504–2513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kubota D, Yoshida A, Kawai A, Kondo T . Proteomics identified overexpression of SET oncogene product and possible therapeutic utility of protein phosphatase 2A in alveolar soft part sarcoma. J Proteome Res 2014; 13: 2250–2261.

    Article  CAS  PubMed  Google Scholar 

  28. Cristobal I, Rincon R, Manso R, Carames C, Zazo S, Madoz-Gurpide J et al. Deregulation of the PP2A inhibitor SET shows promising therapeutic implications and determines poor clinical outcome in patients with metastatic colorectal cancer. Clin Cancer Res 2015; 21: 347–356.

    Article  CAS  PubMed  Google Scholar 

  29. Chen KF, Liu CY, Lin YC, Yu HC, Liu TH, Hou DR et al. CIP2A mediates effects of bortezomib on phospho-Akt and apoptosis in hepatocellular carcinoma cells. Oncogene 2010; 29: 6257–6266.

    Article  CAS  PubMed  Google Scholar 

  30. Yu HC, Chen HJ, Chang YL, Liu CY, Shiau CW, Cheng AL et al. Inhibition of CIP2A determines erlotinib-induced apoptosis in hepatocellular carcinoma. Biochem Pharmacol 2013; 85: 356–366.

    Article  CAS  PubMed  Google Scholar 

  31. Chen KF, Pao KC, Su JC, Chou YC, Liu CY, Chen HJ et al. Development of erlotinib derivatives as CIP2A-ablating agents independent of EGFR activity. Bioorg Med Chem 2012; 20: 6144–6153.

    Article  CAS  PubMed  Google Scholar 

  32. Yu HC, Hung MH, Chen YL, Chu PY, Wang CY, Chao TT et al. Erlotinib derivative inhibits hepatocellular carcinoma by targeting CIP2A to reactivate protein phosphatase 2A. Cell Death Dis 2014; 5: e1359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Arnaud L, Chen S, Liu F, Li B, Khatoon S, Grundke-Iqbal I et al. Mechanism of inhibition of PP2A activity and abnormal hyperphosphorylation of tau by I2(PP2A)/SET. FEBS Lett 2011; 585: 2653–2659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Soderberg O, Gullberg M, Jarvius M, Ridderstrale K, Leuchowius KJ, Jarvius J et al. Direct observation of individual endogenous protein complexes in situ by proximity ligation. Nat Methods 2006; 3: 995–1000.

    Article  PubMed  Google Scholar 

  35. Patching SG . Surface plasmon resonance spectroscopy for characterisation of membrane protein-ligand interactions and its potential for drug discovery. Biochim Biophys Acta 2014; 1838: 43–55.

    Article  CAS  PubMed  Google Scholar 

  36. Carnero A, Blanco-Aparicio C, Renner O, Link W, Leal JF . The PTEN/PI3K/AKT signalling pathway in cancer, therapeutic implications. Curr Cancer Drug Targets 2008; 8: 187–198.

    Article  CAS  PubMed  Google Scholar 

  37. Chen KF, Chen HL, Tai WT, Feng WC, Hsu CH, Chen PJ et al. Activation of phosphatidylinositol 3-kinase/Akt signaling pathway mediates acquired resistance to sorafenib in hepatocellular carcinoma cells. J Pharmacol Exp Ther 2011; 337: 155–161.

    Article  CAS  PubMed  Google Scholar 

  38. Bruix J, Takayama T, Mazzaferro V, Chau GY, Yang J, Kudo M et al. STORM: a phase III randomized, double-blind, placebo-controlled trial of adjuvant sorafenib after resection or ablation to prevent recurrence of hepatocellular carcinoma (HCC). J Clin Oncol 2014; 32: 2014 (suppl; abstr 4006).

    Article  Google Scholar 

  39. Neviani P, Harb JG, Oaks JJ, Santhanam R, Walker CJ, Ellis JJ et al. PP2A-activating drugs selectively eradicate TKI-resistant chronic myeloid leukemic stem cells. J Clin Invest 2013; 123: 4144–4157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Agarwal A, MacKenzie RJ, Pippa R, Eide CA, Oddo J, Tyner JW et al. Antagonism of SET using OP449 enhances the efficacy of tyrosine kinase inhibitors and overcomes drug resistance in myeloid leukemia. Clin Cancer Res 2014; 20: 2092–2103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. von Lindern M, van Baal S, Wiegant J, Raap A, Hagemeijer A, Grosveld G . Can, a putative oncogene associated with myeloid leukemogenesis, may be activated by fusion of its 3' half to different genes: characterization of the set gene. Mol Cell Biol 1992; 12: 3346–3355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Li M, Guo H, Damuni Z . Purification and characterization of two potent heat-stable protein inhibitors of protein phosphatase 2A from bovine kidney. Biochemistry. 1995; 34: 1988–1996.

    Article  CAS  PubMed  Google Scholar 

  43. Pelletier D, Hafler DA . Fingolimod for multiple sclerosis. N Engl J Med 2012; 366: 339–347.

    Article  CAS  PubMed  Google Scholar 

  44. Issa NP, Hentati A . VZV encephalitis that developed in an immunized patient during fingolimod therapy. Neurology 2015; 84: 99–100.

    Article  PubMed  Google Scholar 

  45. Muto S, Senda M, Akai Y, Sato L, Suzuki T, Nagai R et al. Relationship between the structure of SET/TAF-Ibeta/INHAT and its histone chaperone activity. Proc Natl Acad Sci USA 2007; 104: 4285–4290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Li L, Elledge SJ, Peterson CA, Bales ES, Legerski RJ . Specific association between the human DNA repair proteins XPA and ERCC1. Proc Natl Acad Sci USA 1994; 91: 5012–5016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Eisenmann DM, Chapon C, Roberts SM, Dollard C, Winston F . The Saccharomyces cerevisiae SPT8 gene encodes a very acidic protein that is functionally related to SPT3 and TATA-binding protein. Genetics 1994; 137: 647–657.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Pippa R, Dominguez A, Christensen DJ, Moreno-Miralles I, Blanco-Prieto MJ, Vitek MP et al. Effect of FTY720 on the SET-PP2A complex in acute myeloid leukemia; SET binding drugs have antagonistic activity. Leukemia 2014; 28: 1915–1918.

    Article  CAS  PubMed  Google Scholar 

  49. Zhai B, Hu F, Jiang X, Xu J, Zhao D, Liu B et al. Inhibition of Akt reverses the acquired resistance to sorafenib by switching protective autophagy to autophagic cell death in hepatocellular carcinoma. Mol Cancer Ther 2014; 13: 1589–1598.

    Article  CAS  PubMed  Google Scholar 

  50. Torti D, Trusolino L . Oncogene addiction as a foundational rationale for targeted anti-cancer therapy: promises and perils. EMBO Mol Med 2011; 3: 623–636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tai WT, Shiau CW, Chen PJ, Chu PY, Huang HP, Liu CY et al. Discovery of novel Src homology region 2 domain-containing phosphatase 1 agonists from sorafenib for the treatment of hepatocellular carcinoma. Hepatology (Baltimore, MD) 2014; 59: 190–201.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study is supported by grant MOST-104-3113-B-076-001 from the Ministry of Science and Technology and grant 104DHA0100480 and V105B-015 from Taipei Veterans General Hospital, and partial support from Taiwan Clinical Oncology Research Foundation, Taipei Veterans General Hospital-National Yang-Ming University Excellent Physician Scientists Cultivation Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C-W Shiau or K-F Chen.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hung, MH., Chen, YL., Chu, PY. et al. Upregulation of the oncoprotein SET determines poor clinical outcomes in hepatocellular carcinoma and shows therapeutic potential. Oncogene 35, 4891–4902 (2016). https://doi.org/10.1038/onc.2016.21

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.21

This article is cited by

Search

Quick links