Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Coiled-coil domain containing 68 (CCDC68) demonstrates a tumor-suppressive role in pancreatic ductal adenocarcinoma

Subjects

Abstract

Using integrative genomics and functional screening, we identified coiled-coil domain containing 68 (CCDC68) as a novel putative tumor suppressor gene (TSG) in pancreatic ductal adenocarcinoma (PDAC). CCDC68 allelic losses were documented in 48% of primary PDAC patient tumors, 50% of PDAC cell lines and 30% of primary patient derived xenografts. We also discovered a single nucleotide polymorphism (SNP) variant (SNP rs1344011) that leads to exon skipping and generation of an unstable protein isoform CCDC68Δ69–114 in 31% of PDAC patients. Overexpression of full length CCDC68 (CCDC68wt) in PANC-1 and Hs.766T PDAC cell lines lacking CDCC68 expression decreased proliferation and tumorigenicity in scid mice. In contrast, the downregulation of endogenous CCDC68 in MIAPaca-2 cells increased tumor growth rate. These effects were not observed with the deletion-containing isoform, CCDC68Δ69–114.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D . Global cancer statistics. CA Cancer J Clin 2011; 61: 69–90.

    PubMed  Google Scholar 

  2. Hruban RH, Maitra A, Goggins M . Update on pancreatic intraepithelial neoplasia. Int J Clin Exp Pathol 2008; 1: 306–316.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Jones S, Zhang X, Parsons DW, Lin JC, Leary RJ, Angenendt P et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 2008; 321: 1801–1806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Campbell PJ, Yachida S, Mudie LJ, Stephens PJ, Pleasance ED, Stebbings LA et al. The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature 2010; 467: 1109–1113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yachida S, Jones S, Bozic I, Antal T, Leary R, Fu B et al. Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature 2010; 467: 1114–1117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Qian J, Niu J, Li M, Chiao PJ, Tsao MS . In vitro modeling of human pancreatic duct epithelial cell transformation defines gene expression changes induced by K-ras oncogenic activation in pancreatic carcinogenesis. Cancer Res 2005; 65: 5045–5053.

    Article  CAS  PubMed  Google Scholar 

  7. Thu KL, Radulovich N, Becker-Santos DD, Pikor LA, Pusic A, Lockwood WW et al. SOX15 is a candidate tumor suppressor in pancreatic cancer with a potential role in Wnt/beta-catenin signaling. Oncogene 2013; 33: 279–288.

    Article  PubMed  Google Scholar 

  8. Bashyam MD, Bair R, Kim YH, Wang P, Hernandez-Boussard T, Karikari CA et al. Array-based comparative genomic hybridization identifies localized DNA amplifications and homozygous deletions in pancreatic cancer. Neoplasia 2005; 7: 556–562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nowak NJ, Gaile D, Conroy JM, McQuaid D, Cowell J, Carter R et al. Genome-wide aberrations in pancreatic adenocarcinoma. Cancer Genet Cytogenet 2005; 161: 36–50.

    Article  CAS  PubMed  Google Scholar 

  10. Kimmelman AC, Hezel AF, Aguirre AJ, Zheng H, Paik JH, Ying H et al. Genomic alterations link Rho family of GTPases to the highly invasive phenotype of pancreas cancer. Proc Natl Acad Sci U S A 2008; 105: 19372–19377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Harada T, Chelala C, Crnogorac-Jurcevic T, Lemoine NR . Genome-wide analysis of pancreatic cancer using microarray-based techniques. Pancreatology 2009; 9: 13–24.

    Article  CAS  PubMed  Google Scholar 

  12. Calhoun ES, Hucl T, Gallmeier E, West KM, Arking DE, Maitra A et al. Identifying allelic loss and homozygous deletions in pancreatic cancer without matched normals using high-density single-nucleotide polymorphism arrays. Cancer Res 2006; 66: 7920–7928.

    Article  CAS  PubMed  Google Scholar 

  13. Harada T, Chelala C, Bhakta V, Chaplin T, Caulee K, Baril P et al. Genome-wide DNA copy number analysis in pancreatic cancer using high-density single nucleotide polymorphism arrays. Oncogene 2008; 27: 1951–1960.

    Article  CAS  PubMed  Google Scholar 

  14. Lefter LP, Furukawa T, Sunamura M, Duda DG, Takeda K, Kotobuki N et al. Suppression of the tumorigenic phenotype by chromosome 18 transfer into pancreatic cancer cell lines. Genes Chromosomes Cancer 2002; 34: 234–242.

    Article  CAS  PubMed  Google Scholar 

  15. Sheffer M, Bacolod MD, Zuk O, Giardina SF, Pincas H, Barany F et al. Association of survival and disease progression with chromosomal instability: a genomic exploration of colorectal cancer. Proc Natl Acad Sci USA 2009; 106: 7131–7136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ali Hassan NZ, Mokhtar NM, Kok Sin T, Mohamed Rose I, Sagap I, Harun R et al. Integrated analysis of copy number variation and genome-wide expression profiling in colorectal cancer tissues. PLoS ONE 2014; 9: e92553.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Myhre S, Lingjaerde OC, Hennessy BT, Aure MR, Carey MS, Alsner J et al. Influence of DNA copy number and mRNA levels on the expression of breast cancer related proteins. Mol Oncol 2013; 7: 704–718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sharrard RM, Maitland NJ . Alternative splicing of the human PTEN/MMAC1/TEP1 gene. Biochim Biophys Acta 2000; 1494: 282–285.

    Article  CAS  PubMed  Google Scholar 

  19. Hofstetter G, Berger A, Fiegl H, Slade N, Zoric A, Holzer B et al. Alternative splicing of p53 and p73: the novel p53 splice variant p53delta is an independent prognostic marker in ovarian cancer. Oncogene 2010; 29: 1997–2004.

    Article  CAS  PubMed  Google Scholar 

  20. Tammaro C, Raponi M, Wilson DI, Baralle D . BRCA1 exon 11 alternative splicing, multiple functions and the association with cancer. Biochem Soc Trans 2012; 40: 768–772.

    Article  CAS  PubMed  Google Scholar 

  21. Eichmuller S, Usener D, Dummer R, Stein A, Thiel D, Schadendorf D . Serological detection of cutaneous T-cell lymphoma-associated antigens. Proc Natl Acad Sci USA 2001; 98: 629–634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Devitt G, Meyer C, Wiedemann N, Eichmuller S, Kopp-Schneider A, Haferkamp A et al. Serological analysis of human renal cell carcinoma. Int J Cancer 2006; 118: 2210–2219.

    Article  CAS  PubMed  Google Scholar 

  23. Gerhardt A, Usener D, Keese M, Sturm J, Schadendorf D, Eichmuller S . Tissue expression and sero-reactivity of tumor-specific antigens in colorectal cancer. Cancer Lett 2004; 208: 197–206.

    Article  CAS  PubMed  Google Scholar 

  24. Furukawa T, Duguid WP, Rosenberg L, Viallet J, Galloway DA, Tsao MS . Long-term culture and immortalization of epithelial cells from normal adult human pancreatic ducts transfected by the E6E7 gene of human papilloma virus 16. Am J Pathol 1996; 148: 1763–1770.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Lockwood WW, Chari R, Chi B, Lam WL . Recent advances in array comparative genomic hybridization technologies and their applications in human genetics. Eur J Hum Genet 2006; 14: 139–148.

    Article  CAS  PubMed  Google Scholar 

  26. Leung L, Radulovich N, Zhu CQ, Wang D, To C, Ibrahimov E et al. Loss of Canonical Smad4 Signaling Promotes KRAS Driven Malignant Transformation of Human Pancreatic Duct Epithelial Cells and Metastasis. PLoS ONE 2013; 8: e84366.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Hirsch FR, Varella-Garcia M, Bunn PA Jr, Di Maria MV, Veve R, Bremmes RM et al. Epidermal growth factor receptor in non-small-cell lung carcinomas: correlation between gene copy number and protein expression and impact on prognosis. J Clin Oncol 2003; 21: 3798–3807.

    Article  CAS  PubMed  Google Scholar 

  28. Mak AB, Ni Z, Hewel JA, Chen GI, Zhong G, Karamboulas K et al. A lentiviral functional proteomics approach identifies chromatin remodeling complexes important for the induction of pluripotency. Mol Cell Proteomics 2010; 9: 811–823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Radulovich N, Leung L, Tsao MS . Modified gateway system for double shRNA expression and Cre/lox based gene expression. BMC Biotechnol 2011; 11: 24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Don RH, Cox PT, Wainwright BJ, Baker K, Mattick JS . 'Touchdown' PCR to circumvent spurious priming during gene amplification. Nucleic Acids Res 1991; 19: 4008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Radulovich N, Pham NA, Strumpf D, Leung L, Xie W, Jurisica I et al. Differential roles of cyclin D1 and D3 in pancreatic ductal adenocarcinoma. Mol Cancer 2010; 9: 24.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Navab R, Liu J, Seiden-Long I, Shih W, Li M, Bandarchi B et al. Co-overexpression of Met and hepatocyte growth factor promotes systemic metastasis in NCI-H460 non-small cell lung carcinoma cells. Neoplasia 2009; 11: 1292–1300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Thorvaldsdottir H, Robinson JT, Mesirov JP . Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform 2013; 14: 178–192.

    Article  CAS  PubMed  Google Scholar 

  34. Ouyang H, Mou L, Luk C, Liu N, Karaskova J, Squire J et al. Immortal human pancreatic duct epithelial cell lines with near normal genotype and phenotype. Am J Pathol 2000; 157: 1623–1631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the following people for assistance: James Ho (immunohistochemistry), Olga Ludkovksy (FISH), Ni Liu (PCR) and Dennis Wang (support in ICGC analysis). This study was supported by the Canadian Cancer Society Research Institute grant#700809, Canadian Institutes of Health Research grant MOP-49585 and the Ontario Ministry of Health and Long Term Care. N. Radulovich and K. Thu are Vanier Canada Graduate Scholars. Dr S. Sakashita is supported by the Terry Fox Foundation STIHR Program in Molecular Pathology of Cancer at CIHR (STP 53912). Dr Tsao is the M. Qasim Choksi Chair in Lung Cancer Translational Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M-S Tsao.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radulovich, N., Leung, L., Ibrahimov, E. et al. Coiled-coil domain containing 68 (CCDC68) demonstrates a tumor-suppressive role in pancreatic ductal adenocarcinoma. Oncogene 34, 4238–4247 (2015). https://doi.org/10.1038/onc.2014.357

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.357

This article is cited by

Search

Quick links