Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Lysyl oxidase-like 2 (LOXL2) and E47 EMT factor: novel partners in E-cadherin repression and early metastasis colonization

Abstract

Epithelial–mesenchymal transition (EMT) has been associated with increased aggressiveness and acquisition of migratory properties providing tumor cells with the ability to invade into adjacent tissues. Downregulation of E-cadherin, a hallmark of EMT, is mediated by several transcription factors (EMT-TFs) that act also as EMT inducers, among them, Snail1 and the bHLH transcription factor E47. We previously described lysyl oxidase-like 2 (LOXL2), a member of the lysyl oxidase family, as a Snail1 regulator and EMT inducer. Here we show that LOXL2 is also an E47-interacting partner and functionally collaborates in the repression of E-cadherin promoter. Loss and gain of function analyses combined with in vivo studies in syngeneic breast cancer models demonstrate the participation of LOXL2 and E47 in tumor growth and their requirement for lung metastasis. Furthermore, LOXL2 and E47 contribute to early steps of metastatic colonization by cell and noncell autonomous functions regulating the recruitment of bone marrow progenitor cells to the lungs and by direct transcriptional regulation of fibronectin and cytokines TNFα, ANG-1 and GM-CSF. Moreover, fibronectin and GM-CSF proved to be necessary for LOXL2/E47-mediated modulation of tumor growth and lung metastasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Thiery JP, Acloque H, Huang R, Nieto MA . Epithelial-mesenchymal transitions in development end disease. Cell 2009; 139: 871–890.

    Article  CAS  Google Scholar 

  2. Polyak K, Weinberg RA . Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer 2009; 9: 265–273.

    Article  CAS  Google Scholar 

  3. Nieto MA . The ins and outs of the epithelial to mesenchymal transition in health and disease. Annu Rev Cell Dev Biol 2011; 27: 347–376.

    Article  CAS  Google Scholar 

  4. Moreno-Bueno G, Portillo F, Cano A . Transcriptional regulation of cell polarity in EMT and cancer. Oncogene 2008; 27: 6958–6969.

    Article  CAS  Google Scholar 

  5. Peinado H, Olmeda D, Snail Cano A . Zeb and bHLH factors in tumor progression: an alliance against the epithelial phenotype? Nat Rev Cancer 2007; 7: 415–428.

    Article  CAS  Google Scholar 

  6. Nieto MA, Cano A . The epithelial–mesenchymal transition under control: Global programs to regulate epithelial plasticity. Sem Cancer Biol 2012; 22: 361–368.

    Article  CAS  Google Scholar 

  7. Perez-Moreno MA, Locascio A, Rodrigo I, Dhondt G, Portillo F, Nieto MA et al. A new role for E12/E47 in the repression of E-cadherin expression and epithelial mesenchymal transitions. J Biol Chem 2001; 276: 27424–27431.

    Article  CAS  Google Scholar 

  8. Peinado H, Marin F, Cubillo E, Stark HJ, Fusenig N, Nieto MA et al. Snail and E47 repressors of E-cadherin induce distinct invasive and angiogenic properties in vivo. J Cell Sci 2004; 117: 2827–2839.

    Article  CAS  Google Scholar 

  9. Cubillo M, Diaz-Lopez A, Cuevas EP, Moreno-Bueno G, Peinado H, Montes A et al. E47 and id1 interplay in epithelial-mesenchymal transition. PLoS One 2013; 8: e59948.

    Article  CAS  Google Scholar 

  10. De Craene B, Berx G . Regulatory networks defining EMT during cancer initiation and progression. Nat Rev Cancer 2013; 13: 97–110.

    Article  CAS  Google Scholar 

  11. Peinado H, Iglesias-de la Cruz MC, Olmeda D, Csiszar K, Fong KS, Vega S et al. A molecular role for lysyl oxidase-like 2 enzyme in snail regulation and tumor progression. EMBO J 2005; 24: 3446–3458.

    Article  CAS  Google Scholar 

  12. Peinado H, Moreno-Bueno G, Hardisson D, Pérez-Gómez E, Santos V, Mendiola M et al. Lysyl oxidase-like 2 as a new poor prognosis marker of squamous cell carcinomas. Cancer Res 2008; 68: 4541–4550.

    Article  CAS  Google Scholar 

  13. Moreno-Bueno G, Salvador F, Martín A, Floristán A, Cuevas EP, Santos V et al. Lysyl oxidase-like 2 (LOXL2), a new regulator of cell polarity required for metastatic dissemination of basal-like breast carcinomas. EMBO Mol Med 2011; 3: 528–544.

    Article  CAS  Google Scholar 

  14. Csiszar K . Lysyl oxidases: a novel multifunctional amine oxidase family. Prog Nucleic Acid Res Mol Biol 2001; 70: 1–32.

    Article  CAS  Google Scholar 

  15. Mäki JM, Räsänen J, Tikkanen H, Sormunen R, Mäkikallio K, Kivirikko KI et al. Inactivation of the lysyl oxidase gene Lox leads to aortic aneurysms, cardiovascular dysfunction, and perinatal death in mice. Circulation 2002; 106: 2503–2509.

    Article  Google Scholar 

  16. Liu X, Zhao Y, Gao J, Pawlyk B, Starcher B, Spencer JA et al. Elastic fiber homeostasis requires lysyl oxidase-like 1 protein. Nat Genet 2004; 36: 178–182.

    Article  CAS  Google Scholar 

  17. Barker HE, Cox TR, Erler JT . The rationale for targeting the LOX family in cancer. Nat Rev Cancer 2012; 12: 540–552.

    Article  CAS  Google Scholar 

  18. Cano A, Santamaria PG, Moreno-Bueno G . LOXL2 in epithelial cell plasticity and tumor progression. Future Oncol 2012; 8: 1095–1108.

    Article  CAS  Google Scholar 

  19. Barker HE, Chang J, Cox TR, Lang G, Bird D, Nicolau M et al. LOXL2-mediated matrix remodeling in metastasis and mammary gland involution. Cancer Res 2011; 71: 1561–1572.

    Article  CAS  Google Scholar 

  20. Psaila B, Lyden D . The metastatic niche: adapting the foreign soil. Nat Rev Cancer 2009; 9: 285–293.

    Article  CAS  Google Scholar 

  21. Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L, Costa C et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 2005; 438: 820–827.

    Article  CAS  Google Scholar 

  22. Peinado H, Lavotshkin S, Lyden D . The secreted factors responsible for pre-metastatic niche formation: Old sayings and new thoughts. Semin Cancer Biol 2011; 21: 139–146.

    Article  CAS  Google Scholar 

  23. Erler JT, Bennewith KL, Nicolau M, Dornhöfer N, Kong C, Le QT et al. Lysyl oxidase is essential for hypoxia-induced metastasis. Nature 2006; 440: 1222–1226.

    Article  CAS  Google Scholar 

  24. Erler JT, Bennewith KL, Cox TR, Lang G, Bird D, Koong A et al. Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche. Cancer Cell 2009; 15: 35–44.

    Article  CAS  Google Scholar 

  25. Wong CC, Gilkes DM, Zhang H, Chen J, Wei H, Chaturvedi P et al. Hypoxia-inducible factor 1 is a master regulator of breast cancer metastatic niche formation. Proc Natl Acad Sci USA 2011; 108: 16369–16374.

    Article  CAS  Google Scholar 

  26. Cuevas EP, Moreno-Bueno G, Canesin G, Santos V, Portillo F, Cano A . LOXL2 catalytically inactive mutants mediate epithelial-to-mesenchymal transition. Biology Open 2014; 3: 129–137.

    Article  CAS  Google Scholar 

  27. Massari ME, Jennings PA, Murre C . The AD1 transactivation domain of E2A contains a highly conserved helix which is required for its activity in both Saccharomyces cerevisiae and mammalian cells. Mol Cell Biol 1996; 16: 121–129.

    Article  CAS  Google Scholar 

  28. Ewens A, Mihich E, Ehrke MJ . Distant metastasis from subcutaneously grown E0771 medullary breast adenocarcinoma. Anticancer Res 2005; 25: 3905–3915.

    PubMed  Google Scholar 

  29. Hiratsuka S, Watanabe A, Aburatani H, Maru Y . Tumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis. Nat Cell Biol 2006; 8: 1369–1375.

    Article  CAS  Google Scholar 

  30. Bosiljcic M, Hamilton MJ, Banath JP, LePard NE, McDougal DC, Jia JX et al. Myeloid suppressor cells regulate the lung environment-Letter. Cancer Res 2011; 71: 5050–5051.

    Article  CAS  Google Scholar 

  31. Hiratsuka S, Watanabe A, Sakurai Y, Akashi-Takamura S, Ishibashi S, Miyake K et al. The S100A8-serum amyloid A3-TLR4 paracrine cascade establishes a pre-metastatic phase. Nat Cell Biol 2008; 10: 1349–1355.

    Article  CAS  Google Scholar 

  32. Oskarsson T, Acharyya S, Zhang XH, Vanharanta S, Tavazoie SF, Morris PG et al. Breast cancer cells produce tenascin C as a metastatic niche component to colonize the lungs. Nat Med 2011; 17: 867–874.

    Article  CAS  Google Scholar 

  33. Peng L, Ran YL, Hu H, Yu L, Liu Q, Zhou Z et al. Secreted LOXL2 is a novel therapeutic target that promotes gastric cancer metastasis via the Src/FAK pathway. Carcinogenesis 2009; 30: 1660–1669.

    Article  CAS  Google Scholar 

  34. Barry-Hamilton V, Spangler R, Marshall D, McCauley S, Rodriguez HM, Oyasu M et al. Allosteric inhibition of lysyl oxidase-like-2 impedes the development of a pathologic microenvironment. Nat Med 2010; 16: 1009–1017.

    Article  CAS  Google Scholar 

  35. Ocaña OH, Córcoles R, Fabra A, Moreno-Bueno G, Acloque H, Vega S et al. Metastatic colonization requires the repression of the epithelial-mesenchymal transition inducer Prrx. Cancer Cell 2012; 22: 709–724.

    Article  Google Scholar 

  36. Tsai JH, Donaher JL, Murphy DA, Chau S, Yang J . Spatiotemporal regulation of epithelial-mesenchymal transition is essential for squamous cell carcinoma metastasis. Cancer Cell 2012; 22: 725–736.

    Article  CAS  Google Scholar 

  37. Gao D, Joshi N, Choi H, Ryu S, Hahn M, Catena R et al. Myeloid progenitor cells in the premetastatic lung promote metastasis by inducing mesenchymal to epithelial transition. Cancer Res 2012; 72: 1384–1394.

    Article  CAS  Google Scholar 

  38. Ye XZ, Yu SC, Bian XW . Contribution of myeloid-derived suppressor cells to tumor-induced immune suppression, angiogenesis, invasion and metastasis. J Genet Genomics 2010; 37: 423–430.

    Article  CAS  Google Scholar 

  39. Sceneay J, Chow MT, Chen A, Halse HM, Wong CS, Andrews DM et al. Primary Tumor Hypoxia Recruits CD11b+/Ly6Cmed/Ly6G+ Immune Suppressor Cells and Compromises NK Cell Cytotoxicity in the Premetastatic Niche. Cancer Res 2012; 72: 3906–3911.

    Article  CAS  Google Scholar 

  40. Fogelgren B, Polgár N, Szauter KM, Ujfaludi Z, Laczkó R, Fong KS et al. Cellular fibronectin binds to lysyl oxidase with high affinity and is critical for its proteolytic activation. J Biol Chem 2005; 280: 24690–24697.

    Article  CAS  Google Scholar 

  41. Cox TR, Bird D, Baker AM, Barker HE, Ho MW, Lang G et al. LOX-mediated collagen crosslinking is responsible for fibrosis-enhanced metastasis. Cancer Res 2013; 73: 1721–1732.

    Article  CAS  Google Scholar 

  42. Moreno-Bueno G, Peinado H, Molina P, Olmeda D, Cubillo E, Santos V et al. The morphological and molecular features of the epithelial-to-mesenchymal transition. Nat Protoc 2009; 4: 1591–1613.

    Article  CAS  Google Scholar 

  43. Peinado H, Alečković M, Lavotshkin S, Costa-Silva B, Moreno-Bueno G, Hergueta-Redondo M et al. Melanoma-derived exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through upregulation of the MET oncoprotein. Nat Med 2012; 18: 883–891.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank members of A. Cano's group: Saleta Morales and Amalia Montes for technical support, Ana Villarejo and Fernando Salvador for help in flow cytometry and collagen crosslinking analyses, and Thomas Look, Manuel Fresno and Peter N. Cockerill for providing reagents, and Angela Nieto for reading the manuscript. The work was supported by the Spanish Ministry of Science and Innovation (SAF2010–21143; Consolider 2007-CS00017); AICR (12–1057) and ISCIII (RETIC- RD12/0036/0007) to AC, and Comunidad de Madrid (S2010/BMD-2302) to AC and GMB. EPC and VS are founded from the AICR grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Cano.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Canesin, G., Cuevas, E., Santos, V. et al. Lysyl oxidase-like 2 (LOXL2) and E47 EMT factor: novel partners in E-cadherin repression and early metastasis colonization. Oncogene 34, 951–964 (2015). https://doi.org/10.1038/onc.2014.23

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.23

This article is cited by

Search

Quick links