Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Radiation-induced angiogenic signaling pathway in endothelial cells obtained from normal and cancer tissue of human breast

Abstract

Despite strong possibility that endothelial cells (ECs) of tumors and normal tissues may differ in various aspects, most previous studies on ECs have used normal cells. Here, we purified ECs from tumorous and normal human breast tissues, and studied the effect of radiation on angiogenesis and relevant molecular mechanisms in these cells. We found that in normal tissue-derived ECs (NECs), 4 Gy irradiation increased tube formation, matrix metalloproteinase 2 (MMP-2) expression and extracellular signal-regulated kinase (ERK) pathway activation. In cancer-derived ECs (CECs), however, 4 Gy irradiation significantly reduced tube formation, increased the production of angiostatin and interleukin-6 (IL-6), and upregulated AKT and c-Jun N-terminal kinase (JNK) pathway activation. Knockdown experiments showed that siMMP-2 efficiently inhibited tube formation by irradiated NECs, whereas siPlasminogen effectively attenuated the radiation-induced suppression of tube formation and the upregulation of angiostatin in CECs. Moreover, siIL-6 clearly inhibited the radiation-induced generation of angiostatin in CECs. Inhibition of ERK with a pharmacological inhibitor or small interfering RNAs (siRNAs) markedly suppressed the radiation-induced tube formation and MMP-2 upregulation in NECs, whereas the inhibition of either AKT or JNK with pharmacological inhibitor or siRNA treatment of CECs markedly attenuated the inhibition of tube formation and the upregulation of angiostatin and IL-6 caused by 4 Gy irradiation. These observations collectively demonstrate that there are distinct differences in the radiation responses of NECs and CECs, and might provide important clues for improving the efficacy of radiation therapy.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Barcellos-Hoff MH, Park C, Wright EG . Radiation and the microenvironment-tumorigenesis and therapy. Nat Rev Cancer 2005; 5: 867–875.

    Article  CAS  Google Scholar 

  2. Park HJ, Griffin RJ, Hui S, Levitt SH, Song CW . Radiation-induced vascular damage in tumors: implications of vascular damage in ablative hypofractionated radiotherapy (SBRT and SRS). Radiat Res 2012; 177: 311–327.

    Article  CAS  Google Scholar 

  3. Truman JP, García-Barros M, Kaag M, Hambardzumyan D, Stancevic B, Chan M et al. Endothelial membrane remodeling is obligate for anti-angiogenic radiosensitization during tumor radiosurgery. PLoS One 2010; 5: e12310.

    Article  Google Scholar 

  4. Garcia-Barros M, Paris F, Cordon-Cardo C, Lyden D, Rafii S, Haimovitz-Friedman A et al. Tumor response to radiotherapy regulated by endothelial cell apoptosis. Science 2003; 300: 1155–1159.

    Article  CAS  Google Scholar 

  5. Park MT, Oh ET, Song MJ, Kim WJ, Cho YU, Kim SJ et al. The radiosensitivity of endothelial cells isolated from human breast cancer and normal tissue in vitro. Microvasc Res 2012; 84: 140–148.

    Article  CAS  Google Scholar 

  6. Brown M, Bristow R, Glazer P, Hill R, McBride W, McKenna G et al. Comment on "tumor response to radiotherapy regulated by endothelial cell apoptosis" (II). Science 2003; 302: 1894.

    Article  CAS  Google Scholar 

  7. Gerweck LE, Vijayappa S, Kurimasa A, Ogawa K, Chen DJ . Tumor cell radiosensitivity is a major determinant of tumor response to radiation. Cancer Res 2006; 66: 8352–8355.

    Article  CAS  Google Scholar 

  8. Park MT, Oh ET, Song MJ, Lee H, Park HJ . Radio-sensitivities and angiogenic signaling pathways of irradiated normal endothelial cells derived from diverse human organs. J Radiat Res 2012; 53: 570–580.

    Article  CAS  Google Scholar 

  9. Fokas E, McKenna WG, Muschel RJ . The impact of tumor microenvironment on cancer treatment and its modulation by direct and indirect antivascular strategies. Cancer Metastasis Rev 2012; 31: 823–842.

    Article  CAS  Google Scholar 

  10. Moeller BJ, Cao Y, Li CY, Dewhirst MW . Radiation activates HIF-1 to regulate vascular radiosensitivity in tumors: role of reoxygenation, free radicals, and stress granules. Cancer Cell 2004; 5: 429–441.

    Article  CAS  Google Scholar 

  11. Skuli N, Monferran S, Delmas C, Favre G, Bonnet J, Toulas C et al. Alphavbeta3/alphavbeta5 integrins-FAK-RhoB: a novel pathway for hypoxia regulation in glioblastoma. Cancer Res 2009; 69: 3308–3316.

    Article  CAS  Google Scholar 

  12. Bussink J, van der Kogel AJ, Kaanders JH . Activation of the PI3-K/AKT pathway and implications for radioresistance mechanisms in head and neck cancer. Lancet Oncol 2008; 9: 288–296.

    Article  CAS  Google Scholar 

  13. Chan DA, Giaccia AJ . Hypoxia, gene expression, and metastasis. Cancer Metastasis Rev 2007; 26: 333–339.

    Article  CAS  Google Scholar 

  14. Verhoeff JJ, Stalpers LJ, Claes A, Hovinga KE, Musters GD, Peter Vandertop W et al. Tumour control by whole brain irradiation of anti-VEGF-treated mice bearing intracerebral glioma. Eur J Cancer 2009; 45: 3074–3080.

    Article  CAS  Google Scholar 

  15. Sofia Vala I, Martins LR, Imaizumi N, Nunes RJ, Rino J, Kuonen F et al. Low doses of ionizing radiation promote tumor growth and metastasis by enhancing angiogenesis. PLoS One 2010; 5: e11222.

    Article  Google Scholar 

  16. Visse R, Nagase H . Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res 2003; 92: 827–839.

    Article  CAS  Google Scholar 

  17. Egeblad M, Werb Z . New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2002; 2: 161–174.

    Article  CAS  Google Scholar 

  18. Sternlicht MD, Werb Z . How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol 2001; 17: 463–516.

    Article  CAS  Google Scholar 

  19. Djonov V, Cresto N, Aebersold DM, Burri PH, Altermatt HJ, Hristic M et al. Tumor cell specific expression of MMP-2 correlates with tumor vascularisation in breast cancer. Int J Oncol 2002; 21: 25–30.

    CAS  PubMed  Google Scholar 

  20. Creemers EE, Cleutjens JP, Smits JF, Daemen MJ . Matrix metalloproteinase inhibition after myocardial infarction: a new approach to prevent heart failure? Circ Res 2001; 89: 201–210.

    Article  CAS  Google Scholar 

  21. Ribatti D . Endogenous inhibitors of angiogenesis: a historical review. Leuk Res 2009; 33: 638–644.

    Article  CAS  Google Scholar 

  22. O'Reilly MS, Boehm T, Shing Y, Fukai N, Vasios G, Lane WS et al. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 1997; 88: 277–285.

    Article  CAS  Google Scholar 

  23. O'Reilly MS, Holmgren L, Shing Y, Chen C, Rosenthal RA, Moses M et al. Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 1994; 79: 315–328.

    Article  CAS  Google Scholar 

  24. Nguyen V, Gaber MW, Sontag MR, Kiani MF . Late effects of ionizing radiation on the microvascular networks in normal tissue. Radiat Res 2000; 154: 531–536.

    Article  CAS  Google Scholar 

  25. Folkman J . Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1995; 1: 27–31.

    Article  CAS  Google Scholar 

  26. Hida K, Hida Y, Amin DN, Flint AF, Panigrahy D, Morton CC et al. Tumor-associated endothelial cells with cytogenetic abnormalities. Cancer Res 2004; 64: 8249–8255.

    Article  CAS  Google Scholar 

  27. Konerding MA, Fait E, Gaumann A . 3D microvascular architecture of pre-cancerous lesions and invasive carcinomas of the colon. Br J Cancer 2001; 84: 1354–1362.

    Article  CAS  Google Scholar 

  28. Song CW, Levitt SH . Quantitative study of vascularity in Walker carcinoma 256. Cancer Res 1971; 4: 31–39.

    Google Scholar 

  29. Lunt SJ, Chaudary N, Hill RP . The tumor microenvironment and metastatic disease. Clin Exp Metastasis 2009; 26: 19–34.

    Article  Google Scholar 

  30. St Croix B, Rago C, Velculescu V, Traverso G, Romans KE, Montgomery E et al. Genes expressed in human tumor endothelium. Science 2000; 289: 1197–1202.

    Article  CAS  Google Scholar 

  31. Hida K, Hida Y, Shindoh M . Understanding tumor endothelial cell abnormalities to develop ideal anti-angiogenic therapies. Cancer Sci 2008; 99: 459–466.

    Article  CAS  Google Scholar 

  32. Shiojima I, Walsh K . Role of Akt signaling in vascular homeostasis and angiogenesis. Circ Res 2002; 90: 1243–1250.

    Article  CAS  Google Scholar 

  33. Kim KH, Yang CS, Shin AR, Jeon SR, Park JK, Kim HJ et al. Mycobacterial heparin-binding hemagglutinin antigen activates inflammatory responses through PI3-K/Akt, NF-κB, and MAPK pathways. Immune Netw 2011; 11: 123–133.

    Article  Google Scholar 

  34. Lin HY, Tang CH, Chen JH, Chuang JY, Huang SM, Tan TW et al. Peptidoglycan induces interleukin-6 expression through the TLR2 receptor, JNK, c-Jun, and AP-1 pathways in microglia. J Cell Physiol 2011; 226: 1573–1582.

    Article  CAS  Google Scholar 

  35. Bannach FG, Gutierrez-Fernandez A, Parmer RJ, Miles LA . Interleukin-6-induced plasminogen gene expression in murine hepatocytes is mediated by transcription factor CCAAT/enhancer binding protein beta (C/EBPbeta). J Thromb Haemost 2004; 2: 2205–2212.

    Article  CAS  Google Scholar 

  36. Park HJ, Lee SH, Chung H, Rhee YH, Lim BU, Ha SW et al. Influence of environmental pH on G2-phase arrest caused by ionizing radiation. Radiat Res 2003; 159: 86–93.

    Article  CAS  Google Scholar 

  37. Chen FH, Chiang CS, Wang CC, Fu SY, Tsai CS, Jung SM et al. Vasculatures in tumors growing from preirradiated tissues: formed by vasculogenesis and resistant to radiation and antiangiogenic therapy. Int J Radiat Oncol Biol Phys 2011; 80: 1512–1521.

    Article  Google Scholar 

  38. Karar J, Maity A . Modulating the tumor microenvironment to increase radiation responsiveness. Cancer Biol Ther 2009; 8: 1994–2001.

    Article  CAS  Google Scholar 

  39. Milliat F, François A, Isoir M, Deutsch E, Tamarat R, Tarlet G et al. Influence of endothelial cells on vascular smooth muscle cells phenotype after irradiation: implication in radiation-induced vascular damages. Am J Pathol 2006; 169: 1484–1495.

    Article  CAS  Google Scholar 

  40. Ahmad M, Khurana NR, Jaberi JE . Ionizing radiation decreases capillary-like structure formation by endothelial cells in vitro. Microvasc Res 2007; 73: 14–19.

    Article  CAS  Google Scholar 

  41. Vincenti S, Brillante N, Lanza V, Bozzoni I, Presutti C, Chiani F et al. HUVEC respond to radiation by inducing the expression of pro-angiogenic microRNAs. Microvasc Res 2007; 73: 14–19.

    Article  Google Scholar 

  42. Haimovitz-Friedman A, Witte L, Chaudhuri A, McLoughlin M, Fuks Z . Induction of growth factor genes in endothelial cells by ionizing radiation. Radiat Oncol Invest 1995; 3: 1–8.

    Article  CAS  Google Scholar 

  43. Chou CH, Chen SU, Cheng JC . Radiation-induced interleukin-6 expression through MAPK/p38/NF-kappaB signaling pathway and the resultant antiapoptotic effect on endothelial cells through Mcl-1 expression with sIL6-Ralpha. Int J Radiat Oncol Biol Phys 2009; 75: 1553–1561.

    Article  CAS  Google Scholar 

  44. Gorski DH, Mauceri HJ, Salloum RM, Gately S, Hellman S, Beckett MA et al. Potentiation of the antitumor effect of ionizing radiation by brief concomitant exposures to angiostatin. Cancer Res 1998; 58: 5686–5689.

    CAS  PubMed  Google Scholar 

  45. Ji WR, Castellino FJ, Chang Y, Deford ME, Gray H, Villarreal X et al. Characterization of kringle domains of angiostatin as antagonists of endothelial cell migration, an important process in angiogenesis. FASEB J 1998; 12: 1731–1738.

    Article  CAS  Google Scholar 

  46. Soff GA . Angiostatin and angiostatin-related proteins. Cancer Metastasis Rev 2000; 19: 97–107.

    Article  CAS  Google Scholar 

  47. Burwick NR, Wahl ML, Fang J, Zhong Z, Moser TL, Li B et al. An Inhibitor of the F1 subunit of ATP synthase (IF1) modulates the activity of angiostatin on the endothelial cell surface. J Biol Chem 2005; 280: 1740–1745.

    Article  CAS  Google Scholar 

  48. Wei J, Zhou S, Bachem MG, Debatin KM, Beltinger C . Infiltration of blood outgrowth endothelial cells into tumor spheroids: role of matrix metalloproteinases and irradiation. Anticancer Res 2007; 27: 1415–1421.

    CAS  PubMed  Google Scholar 

  49. Badiga AV, Chetty C, Kesanakurti D, Are D, Guirati M, Klopfenstein JD et al. MMP-2 siRNA inhibits radiation-enhanced invasiveness in glioma cells. PLoS One 2011; 6: e20614.

    Article  CAS  Google Scholar 

  50. Vorotnikova E, Tries M, Retinoids BraunhutS . and TIMP1 prevent radiation-induced apoptosis of capillary endothelial cells. Radiat Res 2004; 161: 174–184.

    Article  CAS  Google Scholar 

  51. Zhao W, Goswami PC, Robbins ME . Radiation-induced up-regulation of Mmp2 involves increased mRNA stability, redox modulation, and MAPK activation. Radiat Res 2004; 161: 418–429.

    Article  CAS  Google Scholar 

  52. Adya R, Tan BK, Punn A, Chen J, Randeva HS . Visfatin induces human endothelial VEGF and MMP-2/9 production via MAPK and PI3K/Akt signalling pathways: novel insights into visfatin-induced angiogenesis. Cardiovasc Res 2008; 78: 356–365.

    Article  CAS  Google Scholar 

  53. Wu WT, Chen CN, Lin CI, Chen JH, Lee H . Lysophospholipids enhance matrix metalloproteinase-2 expression in human endothelial cells. Endocrinology 2005; 146: 3387–3400.

    Article  CAS  Google Scholar 

  54. von Offenberg Sweeney N, Cummins PM, Birney YA, Cullen JP, Redmond EM, Cahill PA . Cyclic strain-mediated regulation of endothelial matrix metalloproteinase-2 expression and activity. Cardiovasc Res 2004; 63: 625–634.

    Article  CAS  Google Scholar 

  55. Shao Z, Bhattacharya K, Hsich E, Park L, Walters B, Germann U et al. c-Jun N-terminal kinases mediate reactivation of Akt and cardiomyocyte survival after hypoxic injury in vitro and in vivo. Circ Res 2006; 98: 111–118.

    Article  CAS  Google Scholar 

  56. Meeren AV, Bertho JM, Vandamme M, Gaugler MH . Ionizing radiation enhances IL-6 and IL-8 production by human endothelial cells. Mediators Inflamm 1997; 6: 185–193.

    Article  CAS  Google Scholar 

  57. Fee D, Grzybicki D, Dobbs M, Ihyer S, Clotfelter J, Macvilay S et al. Interleukin 6 promotes vasculogenesis of murine brain microvessel endothelial cells. Cytokine 2000; 12: 655–665.

    Article  CAS  Google Scholar 

  58. Nilsson MB, Langley RR, Fidler IJ . Interleukin-6, secreted by human ovarian carcinoma cells, is a potent proangiogenic cytokine. Cancer Res 2005; 65: 10794–10800.

    Article  CAS  Google Scholar 

  59. Hatzi E, Murphy C, Zoephel A, Rasmussen H, Morbidelli L, Ahorn H et al. N-myc oncogene overexpression down-regulates IL-6; evidence that IL-6 inhibits angiogenesis and suppresses neuroblastoma tumor growth. Oncogene 2002; 21: 3552–3561.

    Article  CAS  Google Scholar 

  60. Grivennikov SI, Greten FR, Karin M . Immunity, inflammation, and cancer. Cell 2010; 140: 883–899.

    Article  CAS  Google Scholar 

  61. Pang X, Yi Z, Zhang X, Sung B, Qu W, Lain X et al. Acetyl-11-keto-β-boswellic acid inhibits prostate tumor growth by suppressing vascular endothelial growth factor receptor 2-mediated angiogenesis. Cancer Res 2009; 69: 5893–5900.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Nuclear R&D Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2011-0015230 and 2009-0093747), and by a grant of the Korean Health Technology R&D Project, Ministry of Health and Welfare (A062254).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H J Park.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oh, ET., Park, MT., Song, MJ. et al. Radiation-induced angiogenic signaling pathway in endothelial cells obtained from normal and cancer tissue of human breast. Oncogene 33, 1229–1238 (2014). https://doi.org/10.1038/onc.2013.70

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.70

Keywords

This article is cited by

Search

Quick links