Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Suppression of MIM by microRNA-182 activates RhoA and promotes breast cancer metastasis

Abstract

Breast cancer is the most common type of cancer among women worldwide, and metastasis represents the most devastating stage of the disease. Recent studies have revealed that microRNAs (miRNA) have critical roles to regulate cancer cell invasion and metastasis. Here we present evidence to show the role of miR-182 in breast cancer metastasis. miR-182 is upregulated in the malignant cell line variants of both human MCF10 and mouse 4T1 series. Ectopic expression of miR-182 enhanced breast cancer cell motility and invasiveness, whereas miR-182 inhibition resulted in opposite changes. In nude mice, miR-182 led to increased pulmonary colonization of cancer cells. We further demonstrated that miR-182 directly targets MIM (Missing in Metastasis), which suppresses metastasis by inhibiting ras homolog family member A (RhoA) activity and stress fiber formation in breast cancer cells. Restoring MIM expression completely blocked the pro-metastasis function of miR-182, while RhoA inhibition reversed the phenotypes of both miR-182 overexpression and MIM knockdown. In breast tumor samples, miR-182 induction is linked to downregulation of MIM, RhoA activation and poor prognosis. Hence, our data delineates the molecular pathway by which miR-182 promotes breast cancer invasion and metastasis, and may have important implication for the treatment of metastatic cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D . Global cancer statistics. CA Cancer J Clin 2011; 61: 69–90.

    Article  PubMed  Google Scholar 

  2. Xu S, Witmer PD, Lumayag S, Kovacs B, Valle D . MicroRNA (miRNA) transcriptome of mouse retina and identification of a sensory organ-specific miRNA cluster. J Biol Chem 2007; 282: 25053–25066.

    Article  CAS  PubMed  Google Scholar 

  3. Moskwa P, Buffa FM, Pan Y, Panchakshari R, Gottipati P, Muschel RJ et al. miR-182-mediated downregulation of BRCA1 impacts DNA repair and sensitivity to PARP inhibitors. Mol Cell 2011; 41: 210–220.

    Article  CAS  PubMed  Google Scholar 

  4. Stittrich AB, Haftmann C, Sgouroudis E, Kuhl AA, Hegazy AN, Panse I et al. The microRNA miR-182 is induced by IL-2 and promotes clonal expansion of activated helper T lymphocytes. Nat Immunol 2010; 11: 1057–1062.

    Article  CAS  PubMed  Google Scholar 

  5. Saus E, Soria V, Escaramis G, Vivarelli F, Crespo JM, Kagerbauer B et al. Genetic variants and abnormal processing of pre-miR-182, a circadian clock modulator, in major depression patients with late insomnia. Hum Mol Genet 2010; 19: 4017–4025.

    Article  CAS  PubMed  Google Scholar 

  6. Guttilla IK, White BA . Coordinate regulation of FOXO1 by miR-27a, miR-96, and miR-182 in breast cancer cells. J Biol Chem 2009; 284: 23204–23216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sun Y, Fang R, Li C, Li L, Li F, Ye X et al. Hsa-mir-182 suppresses lung tumorigenesis through down regulation of RGS17 expression in vitro. Biochem Biophys Res Commun 2010; 396: 501–507.

    Article  CAS  PubMed  Google Scholar 

  8. Segura MF, Hanniford D, Menendez S, Reavie L, Zou X, Alvarez-Diaz S et al. Aberrant miR-182 expression promotes melanoma metastasis by repressing FOXO3 and microphthalmia-associated transcription factor. Proc Natl Acad Sci USA 2009; 106: 1814–1819.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Huynh C, Segura MF, Gaziel-Sovran A, Menendez S, Darvishian F, Chiriboga L et al. Efficient in vivo microRNA targeting of liver metastasis. Oncogene 2011; 30: 1481–1488.

    Article  CAS  PubMed  Google Scholar 

  10. Jiang L, Mao P, Song L, Wu J, Huang J, Lin C et al. miR-182 as a prognostic marker for glioma progression and patient survival. Am J Pathol 2010; 177: 29–38.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Liu Z, Liu J, Segura MF, Shao C, Lee P, Gong Y et al. MiR-182 overexpression in tumourigenesis of high-grade serous ovarian carcinoma. J Pathol 2012; 228: 204–215.

    Article  CAS  PubMed  Google Scholar 

  12. Callahan CA, Ofstad T, Horng L, Wang JK, Zhen HH, Coulombe PA et al. MIM/BEG4, a Sonic hedgehog-responsive gene that potentiates Gli-dependent transcription. Genes Dev 2004; 18: 2724–2729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gonzalez-Quevedo R, Shoffer M, Horng L, Oro AE . Receptor tyrosine phosphatase-dependent cytoskeletal remodeling by the hedgehog-responsive gene MIM/BEG4. J Cell Biol 2005; 168: 453–463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dawson JC, Timpson P, Kalna G, Machesky LM . Mtss1 regulates epidermal growth factor signaling in head and neck squamous carcinoma cells. Oncogene 2011; 31: 1781–1793.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Mattila PK, Salminen M, Yamashiro T, Lappalainen P . Mouse MIM, a tissue-specific regulator of cytoskeletal dynamics, interacts with ATP-actin monomers through its C-terminal WH2 domain. J Biol Chem 2003; 278: 8452–8459.

    Article  CAS  PubMed  Google Scholar 

  16. Woodings JA, Sharp SJ, Machesky LM . MIM-B, a putative metastasis suppressor protein, binds to actin and to protein tyrosine phosphatase delta. Biochem J 2003; 371: 463–471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lin J, Liu J, Wang Y, Zhu J, Zhou K, Smith N et al. Differential regulation of cortactin and N-WASP-mediated actin polymerization by missing in metastasis (MIM) protein. Oncogene 2005; 24: 2059–2066.

    Article  CAS  PubMed  Google Scholar 

  18. Yamagishi A, Masuda M, Ohki T, Onishi H, Mochizuki N . A novel actin bundling/filopodium-forming domain conserved in insulin receptor tyrosine kinase substrate p53 and missing in metastasis protein. J Biol Chem 2004; 279: 14929–14936.

    Article  CAS  PubMed  Google Scholar 

  19. Saarikangas J, Mattila PK, Varjosalo M, Bovellan M, Hakanen J, Calzada-Wack J et al. Missing-in-metastasis MIM/MTSS1 promotes actin assembly at intercellular junctions and is required for integrity of kidney epithelia. J Cell Sci 2011; 124: 1245–1255.

    Article  CAS  PubMed  Google Scholar 

  20. Lee YG, Macoska JA, Korenchuk S, Pienta KJ . MIM, a potential metastasis suppressor gene in bladder cancer. Neoplasia 2002; 4: 291–294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang Y, Liu J, Smith E, Zhou K, Liao J, Yang GY et al. Downregulation of missing in metastasis gene (MIM) is associated with the progression of bladder transitional carcinomas. Cancer Invest 2007; 25: 79–86.

    Article  PubMed  Google Scholar 

  22. Parr C, Jiang WG . Metastasis suppressor 1 (MTSS1) demonstrates prognostic value and anti-metastatic properties in breast cancer. Eur J Cancer 2009; 45: 1673–1683.

    Article  CAS  PubMed  Google Scholar 

  23. Liu K, Wang G, Ding H, Chen Y, Yu G, Wang J . Downregulation of metastasis suppressor 1(MTSS1) is associated with nodal metastasis and poor outcome in Chinese patients with gastric cancer. BMC Cancer 2010; 10: 428.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Xie F, Ye L, Chen J, Wu N, Zhang Z, Yang Y et al. The impact of Metastasis Suppressor-1, MTSS1, on oesophageal squamous cell carcinoma and its clinical significance. J Transl Med 2011; 9: 95.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Nixdorf S, Grimm MO, Loberg R, Marreiros A, Russell PJ, Pienta KJ et al. Expression and regulation of MIM (Missing In Metastasis), a novel putative metastasis suppressor gene, and MIM-B, in bladder cancer cell lines. Cancer Lett 2004; 215: 209–220.

    Article  CAS  PubMed  Google Scholar 

  26. Ma S, Guan XY, Lee TK, Chan KW . Clinicopathological significance of missing in metastasis B expression in hepatocellular carcinoma. Hum Pathol 2007; 38: 1201–1206.

    Article  CAS  PubMed  Google Scholar 

  27. Wang D, Xu MR, Wang T, Li T, Zhu J . MTSS1 overexpression correlates with poor prognosis in colorectal cancer. J Gastrointest Surg 2011; 15: 1205–1212.

    Article  PubMed  Google Scholar 

  28. Bompard G, Sharp SJ, Freiss G, Machesky LM . Involvement of Rac in actin cytoskeleton rearrangements induced by MIM-B. J Cell Sci 2005; 118: 5393–5403.

    Article  CAS  PubMed  Google Scholar 

  29. Du P, Ye L, Ruge F, Yang Y, Jiang WG . Metastasis suppressor-1, MTSS1, acts as a putative tumour suppressor in human bladder cancer. Anticancer Res 2011; 31: 3205–3212.

    CAS  PubMed  Google Scholar 

  30. Xie F, Ye L, Ta M, Zhang L, Jiang WG . MTSS1: a multifunctional protein and its role in cancer invasion and metastasis. Front Biosci 2011; 3: 621–631.

    Article  Google Scholar 

  31. Aslakson CJ, Miller FR . Selective events in the metastatic process defined by analysis of the sequential dissemination of subpopulations of a mouse mammary tumor. Cancer Res 1992; 52: 1399–1405.

    CAS  PubMed  Google Scholar 

  32. Lu X, Bennet B, Mu E, Rabinowitz J, Kang Y . Metabolomic changes accompanying transformation and acquisition of metastatic potential in a syngeneic mouse mammary tumor model. J Biol Chem 2010; 285: 9317–9321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Strickland LB, Dawson PJ, Santner SJ, Miller FR . Progression of premalignant MCF10AT generates heterogeneous malignant variants with characteristic histologic types and immunohistochemical markers. Breast Cancer Res Treat 2000; 64: 235–240.

    Article  CAS  PubMed  Google Scholar 

  34. Santner SJ, Dawson PJ, Tait L, Soule HD, Eliason J, Mohamed AN et al. Malignant MCF10CA1 cell lines derived from premalignant human breast epithelial MCF10AT cells. Breast Cancer Res Treat 2001; 65: 101–110.

    Article  CAS  PubMed  Google Scholar 

  35. Kang Y, Siegel PM, Shu W, Drobnjak M, Kakonen SM, Cordon-Cardo C et al. A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 2003; 3: 537–549.

    Article  CAS  PubMed  Google Scholar 

  36. Friedman RC, Farh KK, Burge CB, Bartel DP . Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 2009; 19: 92–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ et al. Combinatorial microRNA target predictions. Nat Genet 2005; 37: 495–500.

    Article  CAS  PubMed  Google Scholar 

  38. Hicks DG, Yoder BJ, Short S, Tarr S, Prescott N, Crowe JP et al. Loss of breast cancer metastasis suppressor 1 protein expression predicts reduced disease-free survival in subsets of breast cancer patients. Clin Cancer Res 2006; 12: 6702–6708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Acharya PS, Majumdar S, Jacob M, Hayden J, Mrass P, Weninger W et al. Fibroblast migration is mediated by CD44-dependent TGF beta activation. J Cell Sci 2008; 121: 1393–1402.

    Article  CAS  PubMed  Google Scholar 

  40. Sahai E, Marshall CJ . RHO-GTPases and cancer. Nat Rev Cancer 2002; 2: 133–142.

    Article  PubMed  Google Scholar 

  41. Li H, Kloosterman W, Fekete DM . MicroRNA-183 family members regulate sensorineural fates in the inner ear. J Neurosci 2010; 30: 3254–3263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gokhale A, Kunder R, Goel A, Sarin R, Moiyadi A, Shenoy A et al. Distinctive microRNA signature of medulloblastomas associated with the WNT signaling pathway. J Cancer Res Ther 2010; 6: 521–529.

    Article  CAS  PubMed  Google Scholar 

  43. Hall A . The cytoskeleton and cancer. Cancer Metastasis Rev 2009; 28: 5–14.

    Article  PubMed  Google Scholar 

  44. Ebert MS, Neilson JR, Sharp PA . MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods 2007; 4: 721–726.

    Article  CAS  PubMed  Google Scholar 

  45. Rajnicek AM, Foubister LE, McCaig CD . Temporally and spatially coordinated roles for Rho, Rac, Cdc42 and their effectors in growth cone guidance by a physiological electric field. J Cell Sci 2006; 119: 1723–1735.

    Article  CAS  PubMed  Google Scholar 

  46. Hu G, Chong RA, Yang Q, Wei Y, Blanco MA, Li F et al. MTDH activation by 8q22 genomic gain promotes chemoresistance and metastasis of poor-prognosis breast cancer. Cancer Cell 2009; 15: 9–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sethi N, Dai X, Winter CG, Kang Y . Tumor-derived JAGGED1 promotes osteolytic bone metastasis of breast cancer by engaging notch signaling in bone cells. Cancer Cell 2011; 19: 192–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr Eva Hernando for providing the miR-182 overexpression plasmid. The study was funded by the grants from the Ministry of Science and Technology of China (2011CB510105, 2012ZX09506-001-005), National Natural Science Foundation of China (81071754,81222032), Chinese Academy of Sciences (2009OHTP08, KSCX2-YW-R-192) and the Shanghai Pujiang Talent Program (10PJ1411600).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G Hu.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lei, R., Tang, J., Zhuang, X. et al. Suppression of MIM by microRNA-182 activates RhoA and promotes breast cancer metastasis. Oncogene 33, 1287–1296 (2014). https://doi.org/10.1038/onc.2013.65

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.65

Keywords

This article is cited by

Search

Quick links