Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Structural proteins of Kaposi’s sarcoma-associated herpesvirus antagonize p53-mediated apoptosis

Abstract

The tumor suppressor p53 is a central regulatory molecule of apoptosis and is commonly mutated in tumors. Kaposi’s sarcoma-associated herpesvirus (KSHV)-related malignancies express wild-type p53. Accordingly, KSHV encodes proteins that counteract the cell death-inducing effects of p53. Here, the effects of all KSHV genes on the p53 signaling pathway were systematically analyzed using the reversely transfected cell microarray technology. With this approach we detected eight KSHV-encoded genes with potent p53 inhibiting activity in addition to the previously described inhibitory effects of KSHV genes ORF50, K10 and K10.5. Interestingly, the three most potent newly identified inhibitors were KSHV structural proteins, namely ORF22 (glycoprotein H), ORF25 (major capsid protein) and ORF64 (tegument protein). Validation of these results with a classical transfection approach showed that these proteins inhibited p53 signaling in a dose-dependent manner and that this effect could be reversed by small interfering RNA-mediated knockdown of the respective viral gene. All three genes inhibited p53-mediated apoptosis in response to Nutlin-3 treatment in non-infected and KSHV-infected cells. Addressing putative mechanisms, we could show that these proteins could also inhibit the transactivation of the promoters of apoptotic mediators of p53 such as BAX and PIG3. Altogether, we demonstrate for the first time that structural proteins of KSHV can counteract p53-induced apoptosis. These proteins are expressed in the late lytic phase of the viral life cycle and are incorporated into the KSHV virion. Accordingly, these genes may inhibit cell death in the productive and in the early entrance phase of KSHV infection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Chang Y, Cesarman E, Pessin MS, Lee F, Culpepper J, Knowles DM et al. Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi’s sarcoma. Science 1994; 266: 1865–1869.

    Article  CAS  PubMed  Google Scholar 

  2. Cesarman E, Chang Y, Moore PS, Said JW, Knowles DM . Kaposi’s sarcoma-associated herpesvirus-like DNA sequences in AIDS-related body-cavity-based lymphomas. N Engl J Med 1995; 332: 1186–1191.

    Article  CAS  PubMed  Google Scholar 

  3. Soulier J, Grollet L, Oksenhendler E, Cacoub P, Cazals-Hatem D, Babinet P et al. Kaposi’s sarcoma-associated herpesvirus-like DNA sequences in multicentric Castleman’s disease. Blood 1995; 86: 1276–1280.

    CAS  PubMed  Google Scholar 

  4. Dittmer DP . Transcription profile of Kaposi’s sarcoma-associated herpesvirus in primary Kaposi’s sarcoma lesions as determined by real-time PCR arrays. Cancer Res 2003; 63: 2010–2015.

    CAS  PubMed  Google Scholar 

  5. Dittmer DP . Restricted Kaposi’s sarcoma (KS) herpesvirus transcription in KS lesions from patients on successful antiretroviral therapy. MBio 2011; 2: e00138–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sun R, Lin SF, Staskus K, Gradoville L, Grogan E, Haase A et al. Kinetics of Kaposi’s sarcoma-associated herpesvirus gene expression. J Virol 1999; 73: 2232–2242.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Schulz TF, Chang Y . KSHV gene expression and regulation. In: Arvin A, Campadelli-Fiume G, Mocarski E, Moore PS, Roizman B, Whitley R, et al (eds). Human Herpesviruses: Biology, Therapy, and Immunoprophylaxis Chapter 28 Cambridge University Press, Cambridge, 2007.

    Google Scholar 

  8. Staskus KA, Zhong W, Gebhard K, Herndier B, Wang H, Renne R et al. Kaposi’s sarcoma-associated herpesvirus gene expression in endothelial (spindle) tumor cells. J Virol 1997; 71: 715–719.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Stürzl M, Blasig C, Schreier A, Neipel F, Hohenadl C, Cornali E et al. Expression of HHV-8 latency-associated T0.7 RNA in spindle cells and endothelial cells of AIDS-associated, classical and African Kaposi’s sarcoma. Int J Cancer 1997; 72: 68–71.

    Article  PubMed  Google Scholar 

  10. Blasig C, Zietz C, Haar B, Neipel F, Esser S, Brockmeyer NH et al. Monocytes in Kaposi’s sarcoma lesions are productively infected by human herpesvirus 8. J Virol 1997; 71: 7963–7968.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Piette J, Neel H, Marechal V . Mdm2: keeping p53 under control. Oncogene 1997; 15: 1001–1010.

    Article  CAS  PubMed  Google Scholar 

  12. Hollstein M, Sidransky D, Vogelstein B, Harris CC . p53 mutations in human cancers. Science 1991; 253: 49–53.

    Article  CAS  PubMed  Google Scholar 

  13. Lane DP . Cancer. p53, guardian of the genome. Nature 1992; 358: 15–16.

    Article  CAS  PubMed  Google Scholar 

  14. Levine AJ, Momand J, Finlay CA . The p53 tumour suppressor gene. Nature 1991; 351: 453–456.

    Article  CAS  PubMed  Google Scholar 

  15. Petre CE, Sin SH, Dittmer DP . Functional p53 signaling in Kaposi’s sarcoma-associated herpesvirus lymphomas: implications for therapy. J Virol 2007; 81: 1912–1922.

    Article  CAS  PubMed  Google Scholar 

  16. Tornesello ML, Biryahwaho B, Downing R, Hatzakis A, Alessi E, Cusini M et al. TP53 codon 72 polymorphism in classic, endemic and epidemic Kaposi’s sarcoma in African and Caucasian patients. Oncology 2009; 77: 328–334.

    Article  CAS  PubMed  Google Scholar 

  17. Friborg J Jr, Kong W, Hottiger MO, Nabel GJ . p53 inhibition by the LANA protein of KSHV protects against cell death. Nature 1999; 402: 889–894.

    Article  CAS  PubMed  Google Scholar 

  18. Gwack Y, Hwang S, Byun H, Lim C, Kim JW, Choi EJ et al. Kaposi’s sarcoma-associated herpesvirus open reading frame 50 represses p53-induced transcriptional activity and apoptosis. J Virol 2001; 75: 6245–6248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lee HR, Toth Z, Shin YC, Lee JS, Chang H, Gu W et al. Kaposi’s sarcoma-associated herpesvirus viral interferon regulatory factor 4 targets MDM2 to deregulate the p53 tumor suppressor pathway. J Virol 2009; 83: 6739–6747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rivas C, Thlick AE, Parravicini C, Moore PS, Chang Y . Kaposi’s sarcoma-associated herpesvirus LANA2 is a B-cell-specific latent viral protein that inhibits p53. J Virol 2001; 75: 429–438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chen W, Hilton IB, Staudt MR, Burd CE, Dittmer DP . Distinct p53, p53:LANA, and LANA complexes in Kaposi’s sarcoma—associated herpesvirus lymphomas. J Virol 2010; 84: 3898–3908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sarek G, Kurki S, Enback J, Iotzova G, Haas J, Laakkonen P et al. Reactivation of the p53 pathway as a treatment modality for KSHV-induced lymphomas. J Clin Invest 2007; 117: 1019–1028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ye F, Lattif AA, Xie J, Weinberg A, Gao S . Nutlin-3 induces apoptosis, disrupts viral latency and inhibits expression of angiopoietin-2 in Kaposi sarcoma tumor cells. Cell Cycle 2012; 11: 1393–1399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Vassilev LT . Small-molecule antagonists of p53-MDM2 binding: research tools and potential therapeutics. Cell Cycle 2004; 3: 419–421.

    Article  CAS  PubMed  Google Scholar 

  25. Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 2004; 303: 844–848.

    Article  CAS  PubMed  Google Scholar 

  26. Sarek G, Ma L, Enback J, Jarviluoma A, Moreau P, Haas J et al. Kaposi’s sarcoma herpesvirus lytic replication compromises apoptotic response to p53 reactivation in virus-induced lymphomas. Oncogene 2013; 32: 1091–1098.

    Article  CAS  PubMed  Google Scholar 

  27. Sander G, Konrad A, Thurau M, Wies E, Leubert R, Kremmer E et al. Intracellular localization map of human herpesvirus 8 proteins. J Virol 2008; 82: 1908–1922.

    Article  CAS  PubMed  Google Scholar 

  28. Konrad A, Wies E, Thurau M, Marquardt G, Naschberger E, Hentschel S et al. A systems biology approach to identify the combination effects of human herpesvirus 8 genes on NF-kappaB activation. J Virol 2009; 83: 2563–2574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kuhn E, Naschberger E, Konrad A, Croner RS, Britzen-Laurent N, Jochmann R et al. A novel chip-based parallel transfection assay to evaluate paracrine cell interactions. Lab Chip 2012; 12: 1363–1372.

    Article  CAS  PubMed  Google Scholar 

  30. Ziauddin J, Sabatini DM . Microarrays of cells expressing defined cDNAs. Nature 2001; 411: 107–110.

    Article  CAS  PubMed  Google Scholar 

  31. Graham FL, Smiley J, Russell WC, Nairn R . Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J Gen Virol 1977; 36: 59–74.

    Article  CAS  PubMed  Google Scholar 

  32. Moran E . Interaction of adenoviral proteins with pRB and p53. FASEB J 1993; 7: 880–885.

    Article  CAS  PubMed  Google Scholar 

  33. Naranatt PP, Akula SM, Chandran B . Characterization of gamma2-human herpesvirus-8 glycoproteins gH and gL. Arch Virol 2002; 147: 1349–1370.

    Article  CAS  PubMed  Google Scholar 

  34. Hahn A, Birkmann A, Wies E, Dorer D, Mahr K, Stürzl M et al. Kaposi’s sarcoma-associated herpesvirus gH/gL: glycoprotein export and interaction with cellular receptors. J Virol 2009; 83: 396–407.

    Article  CAS  PubMed  Google Scholar 

  35. Hahn AS, Kaufmann JK, Wies E, Naschberger E, Panteleev-Ivlev J, Schmidt K et al. The ephrin receptor tyrosine kinase A2 is a cellular receptor for Kaposi’s sarcoma-associated herpesvirus. Nat Med 2012; 18: 961–966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Myoung J, Ganem D . Generation of a doxycycline-inducible KSHV producer cell line of endothelial origin: maintenance of tight latency with efficient reactivation upon induction. J Virol Methods 2011; 174: 12–21.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Miyashita T, Reed JC . Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 1995; 80: 293–299.

    Article  CAS  PubMed  Google Scholar 

  38. Polyak K, Xia Y, Zweier JL, Kinzler KW, Vogelstein B . A model for p53-induced apoptosis. Nature 1997; 389: 300–305.

    Article  CAS  PubMed  Google Scholar 

  39. Barak Y, Juven T, Haffner R, Oren M . mdm2 expression is induced by wild type p53 activity. EMBO J 1993; 12: 461–468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Stürzl M, Konrad A, Sander G, Wies E, Neipel F, Naschberger E et al. High throughput screening of gene functions in mammalian cells using reversely transfected cell arrays: review and protocol. Comb Chem High Throughput Screen 2008; 11: 159–172.

    Article  PubMed  Google Scholar 

  41. Nakamura H, Li M, Zarycki J, Jung JU . Inhibition of p53 tumor suppressor by viral interferon regulatory factor. J Virol 2001; 75: 7572–7582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Leidal AM, Cyr DP, Hill RJ, Lee PW, McCormick C . Subversion of autophagy by Kaposi’s sarcoma-associated herpesvirus impairs oncogene-induced senescence. Cell Host Microbe 2012; 11: 167–180.

    Article  CAS  PubMed  Google Scholar 

  43. Pertel PE . Human herpesvirus 8 glycoprotein B (gB), gH, and gL can mediate cell fusion. J Virol 2002; 76: 4390–4400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hutchinson L, Browne H, Wargent V, Davis-Poynter N, Primorac S, Goldsmith K et al. A novel herpes simplex virus glycoprotein, gL, forms a complex with glycoprotein H (gH) and affects normal folding and surface expression of gH. J Virol 1992; 66: 2240–2250.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Spaete RR, Perot K, Scott PI, Nelson JA, Stinski MF, Pachl C . Coexpression of truncated human cytomegalovirus gH with the UL115 gene product or the truncated human fibroblast growth factor receptor results in transport of gH to the cell surface. Virology 1993; 193: 853–861.

    Article  CAS  PubMed  Google Scholar 

  46. Jerome KR, Chen Z, Lang R, Torres MR, Hofmeister J, Smith S et al. HSV and glycoprotein J inhibit caspase activation and apoptosis induced by granzyme B or Fas. J Immunol 2001; 167: 3928–3935.

    Article  CAS  PubMed  Google Scholar 

  47. Nakamichi K, Kuroki D, Matsumoto Y, Otsuka H . Bovine herpesvirus 1 glycoprotein G is required for prevention of apoptosis and efficient viral growth in rabbit kidney cells. Virology 2001; 279: 488–498.

    Article  CAS  PubMed  Google Scholar 

  48. Nealon K, Newcomb WW, Pray TR, Craik CS, Brown JC, Kedes DH . Lytic replication of Kaposi’s sarcoma-associated herpesvirus results in the formation of multiple capsid species: isolation and molecular characterization of A, B, and C capsids from a gammaherpesvirus. J Virol 2001; 75: 2866–2878.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jochmann R, Pfannstiel J, Chudasama P, Kuhn E, Konrad A, Stürzl M . O-GlcNAc transferase inhibits KSHV propagation and modifies replication relevant viral proteins as detected by systematic O-GlcNAcylation analysis. Glycobiology 2013; 23: 1114–1130.

    Article  CAS  PubMed  Google Scholar 

  50. Ilkow CS, Goping IS, Hobman TC . The Rubella virus capsid is an anti-apoptotic protein that attenuates the pore-forming ability of Bax. PLoS Pathog 2011; 7: e1001291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Urbanowski MD, Hobman TC . The West Nile virus capsid protein blocks apoptosis through a phosphatidylinositol 3-kinase-dependent mechanism. J Virol 2013; 87: 872–881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kwon JA, Rho HM . Transcriptional repression of the human p53 gene by hepatitis B viral core protein (HBc) in human liver cells. Biol Chem 2003; 384: 203–212.

    CAS  PubMed  Google Scholar 

  53. Rozen R, Sathish N, Li Y, Yuan Y . Virion-wide protein interactions of Kaposi’s sarcoma-associated herpesvirus. J Virol 2008; 82: 4742–4750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sathish N, Wang X, Yuan Y . Tegument proteins of Kaposi’s sarcoma-associated herpesvirus and related gamma-herpesviruses. Front Microbiol 2012; 3: 98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Inn KS, Lee SH, Rathbun JY, Wong LY, Toth Z, Machida K et al. Inhibition of RIG-I-mediated signaling by Kaposi’s sarcoma-associated herpesvirus-encoded deubiquitinase ORF64. J Virol 2011; 85: 10899–10904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Takaoka A, Hayakawa S, Yanai H, Stoiber D, Negishi H, Kikuchi H et al. Integration of interferon-alpha/beta signalling to p53 responses in tumour suppression and antiviral defence. Nature 2003; 424: 516–523.

    Article  CAS  PubMed  Google Scholar 

  57. Gross A, Jockel J, Wei MC, Korsmeyer SJ . Enforced dimerization of BAX results in its translocation, mitochondrial dysfunction and apoptosis. EMBO J 1998; 17: 3878–3885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kurosu T, Wu N, Oshikawa G, Kagechika H, Miura O . Enhancement of imatinib-induced apoptosis of BCR/ABL-expressing cells by nutlin-3 through synergistic activation of the mitochondrial apoptotic pathway. Apoptosis 2010; 15: 608–620.

    Article  CAS  PubMed  Google Scholar 

  59. Voltan R, Secchiero P, Corallini F, Zauli G . Selective induction of TP53I3/p53-inducible gene 3 (PIG3) in myeloid leukemic cells, but not in normal cells, by Nutlin-3. Mol Carcinog (e-pub ahead of print 28 November 2012; doi: 10.1002/mc.21985).

    Article  PubMed  Google Scholar 

  60. Grundhoff A, Ganem D . Inefficient establishment of KSHV latency suggests an additional role for continued lytic replication in Kaposi sarcoma pathogenesis. J Clin Invest 2004; 113: 124–136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Austgen K, Oakes SA, Ganem D . Multiple defects, including premature apoptosis, prevent Kaposi’s sarcoma-associated herpesvirus replication in murine cells. J Virol 2012; 86: 1877–1882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lagunoff M, Carroll PA . Inhibition of apoptosis by the gamma-herpesviruses. Int Rev Immunol 2003; 22: 373–399.

    Article  CAS  PubMed  Google Scholar 

  63. Moore PS . KSHV manipulation of the cell cycle and apoptosis. In: Arvin A, Campadelli-Fiume G, Mocarski E, Moore PS, Roizman B, Whitley R, et al. (eds). Human Herpesviruses: Biology, Therapy, and Immunoprophylaxis Chapter 30 Cambridge University Press, Cambridge, 2007.

    Google Scholar 

  64. Hanon E, Meyer G, Vanderplasschen A, Dessy-Doize C, Thiry E, Pastoret PP . Attachment but not penetration of bovine herpesvirus 1 is necessary to induce apoptosis in target cells. J Virol 1998; 72: 7638–7641.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Morris SJ, Price GE, Barnett JM, Hiscox SA, Smith H, Sweet C . Role of neuraminidase in influenza virus-induced apoptosis. J Gen Virol 1999; 80 (Pt 1): 137–146.

    Article  CAS  PubMed  Google Scholar 

  66. Raftery MJ, Behrens CK, Muller A, Krammer PH, Walczak H, Schonrich G . Herpes simplex virus type 1 infection of activated cytotoxic T cells: induction of fratricide as a mechanism of viral immune evasion. J Exp Med 1999; 190: 1103–1114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. de Oliveira DE, Ballon G, Cesarman E . NF-kappaB signaling modulation by EBV and KSHV. Trends Microbiol 2010; 18: 248–257.

    Article  CAS  PubMed  Google Scholar 

  68. Chandran B . Early events in Kaposi’s sarcoma-associated herpesvirus infection of target cells. J Virol 2009; 84: 2188–2199.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Burbelo PD, Issa AT, Ching KH, Wyvill KM, Little RF, Iadarola MJ et al. Distinct profiles of antibodies to Kaposi sarcoma-associated herpesvirus antigens in patients with Kaposi sarcoma, multicentric Castleman disease, and primary effusion lymphoma. J Infect Dis 2010; 201: 1919–1922.

    Article  PubMed  Google Scholar 

  70. Katano H, Sato Y, Kurata T, Mori S, Sata T . Expression and localization of human herpesvirus 8-encoded proteins in primary effusion lymphoma, Kaposi’s sarcoma, and multicentric Castleman’s disease. Virology 2000; 269: 335–344.

    Article  CAS  PubMed  Google Scholar 

  71. Marcelin AG, Motol J, Guihot A, Caumes E, Viard JP, Dussaix E et al. Relationship between the quantity of Kaposi sarcoma-associated herpesvirus (KSHV) in peripheral blood and effusion fluid samples and KSHV-associated disease. J Infect Dis 2007; 196: 1163–1166.

    Article  PubMed  Google Scholar 

  72. Stürzl M, Gaus D, Dirks WG, Ganem D, Jochmann R . Kaposi’s sarcoma-derived cell line SLK is not of endothelial origin, but is a contaminant from a known renal carcinoma cell line. Int J Cancer 2013; 132: 1954–1958.

    Article  PubMed  Google Scholar 

  73. Konrad A, Jochmann R, Kuhn E, Naschberger E, Chudasama P, Stürzl M . Reverse transfected cell microarrays in infectious disease research. Methods Mol Biol 2011; 706: 107–118.

    Article  CAS  PubMed  Google Scholar 

  74. Stürzl M, Konrad A, Alkharsah KR, Jochmann R, Thurau M, Marquardt G et al. The contribution of systems biology and reverse genetics to the understanding of Kaposi’s sarcoma-associated herpesvirus pathogenesis in endothelial cells. Thromb Haemost 2009; 102: 1117–1134.

    Article  PubMed  Google Scholar 

  75. Naschberger E, Werner T, Vicente AB, Guenzi E, Topolt K, Leubert R et al. Nuclear factor-kappaB motif and interferon-alpha-stimulated response element co-operate in the activation of guanylate-binding protein-1 expression by inflammatory cytokines in endothelial cells. Biochem J 2004; 379 (Pt 2): 409–420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Britzen-Laurent N, Lipnik K, Ocker M, Naschberger E, Schellerer VS, Croner RS et al. GBP-1 acts as a tumor suppressor in colorectal cancer cells. Carcinogenesis 2012; 34: 153–162.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Professor Moshe Oren, Professor Wafik S El-Deiry and Professor Bert Vogelstein for sharing plasmids. In addition, we thank PD Dr Reiner Strick and PD Dr Pamela Strissel (University Medical Center Erlangen, Department of Obstetrics and Gynecology) for providing the MCF7 cells. This work was supported by grants of the German Federal Ministry of Education and Research (BMBF, Polyprobe-Study), the Deutsche Forschungsgemeinschaft (DFG-GRK1071, STU238/6-1, SFB796 (sub-project B9)) and the German Cancer Aid (109510). Additional support was obtained from the Interdisciplinary Center for Clinical Research (IZKF) and the Emerging Fields Initiative of the Friedrich-Alexander University of Erlangen to MS, by a grant for the promotion of young researchers (ELAN) of the University Medical Center Erlangen to AK and a grant of the ‘Programm zur Förderung der Chancengleichheit für Frauen in Forschung und Lehre (FFL)’ to PC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Stürzl.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chudasama, P., Konrad, A., Jochmann, R. et al. Structural proteins of Kaposi’s sarcoma-associated herpesvirus antagonize p53-mediated apoptosis. Oncogene 34, 639–649 (2015). https://doi.org/10.1038/onc.2013.595

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.595

Keywords

This article is cited by

Search

Quick links