Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Repression of microRNA-768-3p by MEK/ERK signalling contributes to enhanced mRNA translation in human melanoma

A Corrigendum to this article was published on 27 June 2016

Abstract

Increased global protein synthesis and selective translation of mRNAs encoding proteins contributing to malignancy is common in cancer cells. This is often associated with elevated expression of eukaryotic translation initiation factor 4 (eIF4E), the rate-limiting factor of cap-dependent translation initiation. We report here that in human melanoma downregulation of miR-768-3p as a result of activation of the mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) pathway has an important role in the upregulation of eIF4E and enhancement in protein synthesis. Melanoma cells displayed increased nascent protein production and elevated eIF4E expression, which was associated with the downregulation of miR-768-3p that was predicted to target the 3′-untranslated region of the eIF4E mRNA. Overexpression of miR-768-3p led to the downregulation of the endogenous eIF4E protein, reduction in nascent protein synthesis and inhibition of cell survival and proliferation. These effects were efficiently reversed when eIF4E was co-overexpressed in melanoma cells. On the other hand, introduction of anti-miR-768-3p into melanocytes upregulated endogenous eIF4E protein expression and increased global protein synthesis. Downregulation of miR-768-3p appeared to be mediated by activation of the MEK/ERK pathway, in that treatment of BRAFV600E melanoma cells with the mutant BRAF inhibitor PLX4720 or exposure of either BRAFV600E or wild-type BRAF melanoma cells to the MEK inhibitor U0126 resulted in the upregulation of miR-768-3p and inhibition of nascent protein synthesis. This inhibition was partially blocked in cells cointroduced with anti-miR-768-3p. Significantly, miR-768-3p was similarly downregulated, which was inversely associated with the expression levels of eIF4E in fresh melanoma isolates. Taken together, these results identify downregulation of miR-768-3p and subsequent upregulation of eIF4E as an important mechanism in addition to phosphorylation of eIF4E responsible for MEK/ERK-mediated enhancement of protein synthesis in melanoma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Silvera D, Formenti SC, Schneider RJ . Translational control in cancer. Nat Rev Cancer 2010; 10: 254–266.

    Article  CAS  Google Scholar 

  2. Bilanges B, Stokoe D . Mechanisms of translational deregulation in human tumors and therapeutic intervention strategies. Oncogene 2007; 26: 5973–5990.

    Article  CAS  Google Scholar 

  3. Grzmil M, Hemmings BA . Translation regulation as a therapeutic target in cancer. Cancer Res 2012; 72: 3891–3900.

    Article  CAS  Google Scholar 

  4. Bitterman PB, Polunovsky VA . Translational control of cell fate: from integration of environmental signals to breaching anticancer defense. Cell Cycle 2012; 11: 1097–1107.

    Article  CAS  Google Scholar 

  5. Sonenberg N, Hinnebusch AG . Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell 2009; 136: 731–745.

    Article  CAS  Google Scholar 

  6. Jackson RJ, Hellen CU, Pestova TV . The mechanism of eukaryotic translation initiation and principles of its regulation. Nat Rev Mol Cell Biol 2010; 11: 113–127.

    Article  CAS  Google Scholar 

  7. Phillips A, Blaydes JP . MNK1 and EIF4E are downstream effectors of MEKs in the regulation of the nuclear export of HDM2 mRNA. Oncogene 2008; 27: 1645–1649.

    Article  CAS  Google Scholar 

  8. Hou J, Lam F, Proud C, Wang S . Targeting Mnks for cancer therapy. Oncotarget 2012; 3: 118–131.

    Article  Google Scholar 

  9. Stumpf CR, Ruggero D . The cancerous translation apparatus. Curr Opin Genet Dev 2011; 21: 474–483.

    Article  CAS  Google Scholar 

  10. Wendel HG, Silva RL, Malina A, Mills JR, Zhu H, Ueda T et al. Dissecting eIF4E action in tumorigenesis. Genes Dev 2007; 21: 3232–3237.

    Article  CAS  Google Scholar 

  11. Rosenwald IB . The role of translation in neoplastic transformation from a pathologist's point of view. Oncogene 2004; 23: 3230–3247.

    Article  CAS  Google Scholar 

  12. Larsson O, Li S, Issaenko OA, Avdulov S, Peterson M, Smith K et al. Eukaryotic translation initiation factor 4E induced progression of primary human mammary epithelial cells along the cancer pathway is associated with targeted translational deregulation of oncogenic drivers and inhibitors. Cancer Res 2007; 67: 6814–6824.

    Article  CAS  Google Scholar 

  13. Yang SX, Hewitt SM, Steinberg SM, Liewehr DJ, Swain SM . Expression levels of eIF4E, VEGF, and cyclin D1, and correlation of eIF4E with VEGF and cyclin D1 in multi-tumor tissue microarray. Oncol Rep 2007; 17: 281–287.

    CAS  PubMed  Google Scholar 

  14. Coleman LJ, Peter MB, Teall TJ, Brannan RA, Hanby AM, Honarpisheh H et al. Combined analysis of eIF4E and 4E-binding protein expression predicts breast cancer survival and estimates eIF4E activity. Br J Cancer 2009; 100: 1393–1399.

    Article  CAS  Google Scholar 

  15. De Benedetti A, Graff JR . eIF-4E expression and its role in malignancies and metastases. Oncogene 2004; 23: 3189–3199.

    Article  CAS  Google Scholar 

  16. He L, Hannon GJ . 2004. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 2004; 5: 522–531.

    Article  CAS  Google Scholar 

  17. Iorio MV, Croce CM . MicroRNAs in cancer: small molecules with a huge impact. J Clin Oncol 2009; 27: 5848–5856.

    Article  CAS  Google Scholar 

  18. Humphreys DT, Westman BJ, Martin DI, Preiss T . MicroRNAs control translation initiation by inhibiting eukaryotic initiation factor 4E/cap and poly(A) tail function. Proc Natl Acad Sci USA 2005; 102: 16961–16966.

    Article  CAS  Google Scholar 

  19. Mathonnet G, Fabian MR, Svitkin YV, Parsyan A, Huck L, Murata T et al. MicroRNA inhibition of translation initiation in vitro by targeting the cap-binding complex eIF4F. Science 2007; 317: 1764–1767.

    Article  CAS  Google Scholar 

  20. Lujambio A, Lowe SW . The microcosmos of cancer. Nature 2012; 482: 347–355.

    Article  CAS  Google Scholar 

  21. Felicetti F, Errico MC, Bottero L, Segnalini P, Stoppacciaro A et al. The promyelocytic leukemia zinc finger-microRNA-221/-222 pathway controls melanoma progression through multiple oncogenic mechanisms. Cancer Res 2008; 68: 2745–2754.

    Article  CAS  Google Scholar 

  22. Jin L, Hu WL, Jiang CC, Wang JX, Han CC, Chu P et al. MicroRNA-149*, a p53-responsive microRNA, functions as an oncogenic regulator in human melanoma. Proc Natl Acad Sci USA 2011; 108: 15840–15845.

    Article  CAS  Google Scholar 

  23. Bonazzi VF, Stark MS, Hayward NK . MicroRNA regulation of melanoma progression. Melanoma Res 2012; 22: 101–113.

    Article  CAS  Google Scholar 

  24. Mueller DW, Bosserhoff AK . The evolving concept of ‘melano-miRs’-microRNAs in melanomagenesis. Pigment Cell Melanoma Res 2010; 23: 620–626.

    Article  CAS  Google Scholar 

  25. Wilmott JS, Zhang XD, Hersey P, Scolyer RA . The emerging important role of microRNAs in the pathogenesis, diagnosis and treatment of human cancers. Pathology 2011; 43: 657–671.

    Article  CAS  Google Scholar 

  26. Croce CM . Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet 2009; 10: 704–714.

    Article  CAS  Google Scholar 

  27. Guo ST, Jiang CC, Wang GP, Li YP, Wang CY, Guo XY et al. MicroRNA-497 targets insulin-like growth factor 1 receptor and has a tumour suppressive role in human colorectal cancer. Oncogene 2012; 32: 1910–1920.

    Article  Google Scholar 

  28. Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S et al. Mutations of the BRAF gene in human cancer. Nature 2002; 417: 949–954.

    Article  CAS  Google Scholar 

  29. Platz A, Egyhazi S, Ringborg U, Hansson J . Human cutaneous melanoma; a review of NRAS and BRAF mutation frequencies in relation to histogenetic subclass and body site. Mol Oncol 2008; 1: 395–405.

    Article  Google Scholar 

  30. Couts KL, Anderson EM, Gross MM, Sullivan K, Ahn NG . Oncogenic B-Raf signaling in melanoma cells controls a network of microRNAs with combinatorial functions. Oncogene 2012; 32: 1959–1970.

    Article  Google Scholar 

  31. Caramuta S, Egyházi S, Rodolfo M, Witten D, Hansson J, Larsson C et al. MicroRNA expression profiles associated with mutational status and survival in malignant melanoma. J Invest Dermatol 2010; 130: 2062–2070.

    Article  CAS  Google Scholar 

  32. Yanagiya A, Suyama E, Adachi H, Svitkin YV, Aza-Blanc P, Imataka H et al. Translational homeostasis via the mRNA cap-binding protein, eIF4E. Mol Cell 2012; 46: 847–858.

    Article  CAS  Google Scholar 

  33. Moerke NJ, Aktas H, Chen H, Cantel S, Reibarkh MY, Fahmy A et al. Small-molecule inhibition of the interaction between the translation initiation factors eIF4E and eIF4G. Cell 2007; 128: 257–267.

    Article  CAS  Google Scholar 

  34. Valleron W, Ysebaert L, Berquet L, Fataccioli V, Quelen C, Martin A et al. Small nucleolar RNA expression profiling identifies potential prognostic markers in peripheral T-cell lymphoma. Blood 2012; 120: 3997–4005.

    Article  CAS  Google Scholar 

  35. Miyoshi K, Miyoshi T, Siomi H . Many ways to generate microRNA-like small RNAs: non-canonical pathways for microRNA production. Mol Genet Genom 2010; 284: 95–103.

    Article  CAS  Google Scholar 

  36. Arroyo JD, Chevillet JR, Kroh EM, Ruf IK, Pritchard CC, Gibson DF et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci USA 2011; 108: 5003–5008.

    Article  CAS  Google Scholar 

  37. Kiss T . Biogenesis of small nuclear RNPs. J Cell Sci 2004; 117: 5949–5951.

    Article  CAS  Google Scholar 

  38. Rosenwald IB, Rhoads DB, Callanan LD, Isselbacher KJ, Schmidt EV . Increased expression of eukaryotic translation initiation factors eIF-4E and eIF-2 alpha in response to growth induction by c-myc. Proc Natl Acad Sci USA 1993; 90: 6175–6178.

    Article  CAS  Google Scholar 

  39. Mamane Y, Petroulakis E, Martineau Y, Sato TA, Larsson O, Rajasekhar VK et al. Epigenetic activation of a subset of mRNAs by eIF4E explains its effects on cell proliferation. PLoS One 2007; 2: e242.

    Article  Google Scholar 

  40. Rosenwald IB, Lazaris-Karatzas A, Sonenberg N, Schmidt EV . Elevated levels of cyclin D1 protein in response to increased expression of eukaryotic initiation factor 4E. Mol Cell Biol 1993; 13: 7358–7363.

    Article  CAS  Google Scholar 

  41. Koromilas AE, Lazaris-Karatzas A, Sonenberg N . mRNAs containing extensive secondary structure in their 5′ non-coding region translate efficiently in cells overexpressing initiation factor eIF-4E. EMBO J 1992; 11: 4153–4158.

    Article  CAS  Google Scholar 

  42. Lazaris-Karatzas A, Montine KS, Sonenberg N . Malignant transformation by a eukaryotic initiation factor subunit that binds to mRNA 5′ cap. Nature 1990; 345: 544–547.

    Article  CAS  Google Scholar 

  43. Lazaris-Karatzas A, Sonenberg N . The mRNA 5′ cap-binding protein, eIF-4E, cooperates with v-myc or E1A in the transformation of primary rodent fibroblasts. Mol Cell Biol 1992; 12: 1234–1238.

    Article  CAS  Google Scholar 

  44. Graff JR, Konicek BW, Carter JH, Marcusson EG . Targeting the eukaryotic translation initiation factor 4E for cancer therapy. Cancer Res 2008; 68: 631–634.

    Article  CAS  Google Scholar 

  45. Bemis LT, Chen R, Amato CM, Classen EH, Robinson SE, Coffey DG et al. MicroRNA-137 targets microphthalmia-associated transcription factor in melanoma cell lines. Cancer Res 2008; 68: 1362–1368.

    Article  CAS  Google Scholar 

  46. Haflidadóttir BS, Bergsteinsdóttir K, Praetorius C, Steingrímsson E . miR-148 regulates Mitf in melanoma cells. PLoS One 2010; 5: e11574.

    Article  Google Scholar 

  47. Li SC, Tang P, Lin WC . Intronic MicroRNA: Discovery and biological implications. DNA Cell Biol 2007; 26: 195–207.

    Article  Google Scholar 

  48. Takatsu H, Sakurai M, Shin HW, Murakami K, Nakayama K . Identification and characterization of novel clathrin adaptor-related proteins. J Biol Chem 1998; 273: 24693–24700.

    Article  CAS  Google Scholar 

  49. Hong DS, Kurzrock R, Oh Y, Wheler J, Naing A, Brail L et al. A phase 1 dose escalation, pharmacokinetic, and pharmacodynamic evaluation of eIF-4E antisense oligonucleotide LY2275796 in patients with advanced cancer. Clin Cancer Res 2011; 17: 6582–6591.

    Article  CAS  Google Scholar 

  50. Ibrahim AF, Weirauch U, Thomas M, Grünweller A, Hartmann RK, Aigner A . MicroRNA replacement therapy for miR-145 and miR-33a is efficacious in a model of colon carcinoma. Cancer Res 2011; 71: 5214–5224.

    Article  CAS  Google Scholar 

  51. Jiang CC, Lai F, Tay KH, Croft A, Rizos H, Becker TM et al. Apoptosis of human melanoma cells induced by inhibition of B-RAFV600E involves preferential splicing of bimS. Cell Death Dis 2010; 2: 1:e69.

    Google Scholar 

  52. Dong L, Jiang CC, Thorne RF, Croft A, Yang F, Liu H et al. Ets-1 mediates upregulation of Mcl-1 downstream of XBP-1 in human melanoma cells upon ER stress. Oncogene 2011; 30: 3716–3726.

    Article  CAS  Google Scholar 

  53. Blais JD, Filipenko V, Bi M, Harding HP, Ron D, Koumenis C et al. Activating transcription factor 4 is translationally regulated by hypoxic stress. Mol Cell Biol 2004; 24: 7469–7482.

    Article  CAS  Google Scholar 

  54. Wulfken LM, Moritz R, Ohlmann C, Holdenrieder S, Jung V, Becker F et al. MicroRNAs in renal cell carcinoma: diagnostic implications of serum miR-1233 levels. PLoS One 2011; 6: e25787.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the NSW State Cancer Council, Cancer Institute NSW, and National Health and Medical Research Council (NHMRC), Australia. CCJ is a recipient of postdoctoral training Fellowship of NHMRC. XDZ is supported by a senior research fellowship of NHMRC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X D Zhang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, C., Croft, A., Tseng, HY. et al. Repression of microRNA-768-3p by MEK/ERK signalling contributes to enhanced mRNA translation in human melanoma. Oncogene 33, 2577–2588 (2014). https://doi.org/10.1038/onc.2013.237

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.237

Keywords

This article is cited by

Search

Quick links