Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

HTLV-1 HBZ positively regulates the mTOR signaling pathway via inhibition of GADD34 activity in the cytoplasm

Abstract

Human T-cell leukemia virus type-1 (HTLV-1) infection causes adult T-cell leukemia (ATL). Modulation of the transcriptional control of cellular genes by HTLV-1 is thought to be associated with the development of ATL. The viral protein HTLV-1 basic leucine-zipper factor (HBZ) has been shown to dysregulate the activity of cellular transcription factors. Here, we demonstrate that HBZ is exported from the nucleus to the cytoplasm, where it activates the mammalian target of rapamycin (mTOR) signaling pathway through an association with growth arrest and DNA damage gene 34 (GADD34). The N-terminal region of HBZ interacts with the C-terminal region of GADD34. HBZ contains a functional nuclear export signal (NES) sequence within its N-terminal region and it is exported from the nucleus via the CRM1-dependent pathway. Nuclear export of HBZ is essential for its interaction with GADD34 and increased phosphorylation of S6 kinase, which is an established downstream target of the mTOR pathway. Starvation-induced autophagy is significantly suppressed by the overexpression of HBZ. These findings indicate that HBZ is actively exported to the cytoplasm, where it dysregulates the function of cellular factors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Uchiyama T . Human T cell leukemia virus type I (HTLV-1) and human diseases. Annu Rev Immunol 1997; 15: 15–37.

    Article  CAS  PubMed  Google Scholar 

  2. Yasunaga J, Matsuoka M . Molecular mechanisms of HTLV-1 infection and pathogenesis. Int J Hematol 2011; 94: 435–442.

    Article  CAS  PubMed  Google Scholar 

  3. Seiki M, Hattori S, Hirayama Y, Yoshida M . Human adult T-cell leukemia virus: complete nucleotide sequence of the provirus genome integrated in leukemia cell DNA. Proc Natl Acad Sci USA 1983; 80: 3618–3622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Albrecht B, Lairmore MD . Critical role of human T-lymphotropic virus type 1 accessory proteins in viral replication and pathogenesis. Microbiol Mol Biol Rev 2002; 66: 396–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yoshida M . Multiple viral strategies of HTLV-1 for dysregulation of cell growth control. Annu Rev Immunol 2001; 19: 475–496.

    Article  CAS  PubMed  Google Scholar 

  6. Yoshida M . Discovery of HTLV-1, the first human retrovirus, its unique regulatory mechanisms, and insights into pathogenesis. Oncogene 2005; 24: 5931–5937.

    Article  CAS  PubMed  Google Scholar 

  7. Grassmann R, Aboud M, Jeang KT . Molecular mechanisms of cellular transformation by HTLV-1 Tax. Oncogene 2005; 24: 5976–5985.

    Article  CAS  PubMed  Google Scholar 

  8. Hasegawa H, Sawa H, Lewis MJ, Orba Y, Sheehy N, Yamamoto Y et al. Thymus-derived leukemia-lymphoma in mice transgenic for the Tax gene of human T-lymphotropic virus type I. Nat Med 2006; 12: 466–472.

    Article  CAS  PubMed  Google Scholar 

  9. Boxus M, Twizere JC, Leqros S, Dewulf JF, Kettmann R, Willems L . The HTLV-1 Tax interactome. Retrovirology 2008; 5: 76.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Simonins N, Rual JF, Lemmens I, Boxus M, Hirozane-Kishikawa T, Gatot JS et al. Host–pathogen interactome mapping for HTLV-1 and -2 retroviruses. Retrovirology 2012; 9: 26.

    Article  Google Scholar 

  11. Tamiya S, Matsuoka M, Etoh K, Watanabe T, Kamihira S, Yamaguchi K et al. Two types of defective human T-lymphotropic virus type I provirus in adult T-cell leukemia. Blood 1996; 88: 3065–3073.

    CAS  PubMed  Google Scholar 

  12. Furukawa Y, Kubota R, Tara M, Izumo S, Osame M . Existence of escape mutant in HTLV-I tax during the development of adult T-cell leukemia. Blood 2001; 97: 987–993.

    Article  CAS  PubMed  Google Scholar 

  13. Koiwa T, Hamano-Usami A, Ishida T, Okayama A, Yamaguchi K, Kamihira S et al. 5′-Long terminal repeat-selective CpG methylation of latent human T-cell leukemia virus type 1 provirus in vitro and in vivo. J Virol 2002; 76: 9389–9397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Takeda S, Maeda M, Morikawa S, Taniguchi Y, Yasunaga J, Nosaka K et al. Genetic and epigenetic inactivation of tax gene in adult T-cell leukemia cells. Int J Cancer 2004; 109: 559–567.

    Article  CAS  PubMed  Google Scholar 

  15. Taniguchi Y, Nosaka K, Yasunaga J, Maeda M, Mueller N, Okayama A et al. Silencing of human T-cell leukemia virus type I gene transcription by epigenetic mechanisms. Retrovirology 2005; 2: 64.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Gaudray G, Gachon F, Basbous J, Biard-Piechaczyk M, Devaux C, Mesnard JM . The complementary strand of the human T-cell leukemia virus type 1 RNA genome encodes a bZIP transcription factor that down-regulates viral transcription. J Virol 2002; 76: 12813–12822.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Satou Y, Yasunaga J, Yoshida M, Matsuoka M . HTLV-I basic leucine zipper factor gene mRNA supports proliferation of adult T cell leukemia cells. Proc Natl Acad Sci USA 2006; 103: 720–725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rende F, Cavallari I, Corrandin A, Silic-Benussi M, Toulza F, Toulza F et al. Kinetics and intracellular compartmentalization of HTLV-1 gene expression: nuclear retention of HBZ mRNA. Blood 2011; 117: 4855–4859.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bender C, Rende F, Cotena A, Righi P, Ronzi P, Cavallari I et al. Temporal regulation of HTLV-2 expression in infected cell lines and patients: evidence for distinct expression kinetics with nuclear accumulation of APH-2 mRNA. Retrovirology 2012; 9: 74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hivin P, Frédéric M, Arpin-André C, Basbous J, Gay B, Thébault S et al. Nuclear localization of HTLV-I bZIP factor (HBZ) is mediated by three distinct motifs. J Cell Sci 2005; 118: 1355–1362.

    Article  CAS  PubMed  Google Scholar 

  21. Basbous J, Arpin C, Gaudray G, Piechaczyk M, Devaux C, Mesnard JM . The HBZ factor of human T-cell leukemia virus type I dimerizes with transcription factors JunB and c-Jun and modulates their transcriptional activity. J Biol Chem 2003; 278: 43620–43627.

    Article  CAS  PubMed  Google Scholar 

  22. Thébault S, Basbous J, Hivin P, Devaux C, Mesnard JM . HBZ interacts with JunD and stimulates its transcriptional activity. FEBS Lett 2004; 562: 165–170.

    Article  PubMed  Google Scholar 

  23. Matsumoto J, Ohshima T, Isono O, Shimotohno K . HTLV-1 HBZ suppresses AP-1 activity by impairing both the DNA-binding ability and the stability of c-Jun protein. Oncogene 2005; 24: 1001–1010.

    Article  CAS  PubMed  Google Scholar 

  24. Matsuoka M, Green PL . The HBZ gene, a key player in HTLV-1 pathogenesis. Retrovirology 2009; 6: 71.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hagiya K, Yasunaga J, Satou Y, Ohshima K, Matsuoka M . ATF3, an HTLV-1 bZip factor binding protein, promotes proliferation of adult T-cell leukemia cells. Retrovirology 2011; 8: 19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Isono O, Ohshima T, Saeki Y, Matsumoto J, Hijikata M, Tanaka K et al. Human T-cell leukemia virus type 1 HBZ protein bypasses the targeting function of ubiquitination. J Biol Chem 2008; 283: 34273–34282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chou J, Roizman B . Herpes simplex virus 1 gamma(1)34.5 gene function, which blocks the host response to infection, maps in the homologous domain of the genes expressed during growth arrest and DNA damage. Proc Natl Acad Sci USA 1994; 91: 5247–5251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Watanabe R, Tambe Y, Inoue H, Isono T, Haneda M, Isobe K et al. GADD34 inhibits mammalian target of rapamycin signaling via tuberous sclerosis complex and controls cell survival under bioenergetic stress. Int J Mol Med 2007; 19: 475–483.

    CAS  PubMed  Google Scholar 

  29. Murata K, Hayashibara T, Sugahara K, Uemura A, Yamaguchi T, Harasawa H et al. A novel alternative splicing isoform of human T-cell leukemia virus type 1 bZIP factor (HBZ-SI) targets distinct subnuclear localization. J Virol 2006; 80: 2495–2505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cavanagh MH, Landry S, Audet B, Arpin-André C, Hivin P, Paré ME et al. HTLV-1 antisense transcripts initiating in the 3′LTR are alternatively spliced and polyadenylated. Retrovirology 2006; 3: 15.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Yoshida M, Satou Y, Yasunaga J, Fujisawa J, Matsuoka M . Transcriptional control of spliced and unspliced human T-cell leukemia virus type 1 bZIP factor (HBZ) gene. J Virol 2008; 19: 9359–6368.

    Article  Google Scholar 

  32. Zhou W, Brush MH, Choy MS, Shenolikar S . Association with endoplasmic reticulum promotes proteasomal degradation of GADD34 protein. J Biol Chem 2011; 256: 21687–21696.

    Article  Google Scholar 

  33. Jung CH, Ro SH, Cao J, Otto NM, Kim DH . mTOR regulation of autophagy. FEBS Lett 2010; 584: 1287–1295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kapahi P, Chen D, Rogers AN, Katewa SD, Li PW, Thomas EL et al. With TOR, less is more: a key role for the conserved nutrient-sensing TOR pathway in aging. Cell Metab 2010; 11: 453–465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Uddin MN, Ito S, Nishio N, Suganya T, Isobe K . Gadd34 induces autophagy through the suppression of the mTOR pathway during starvation. Biochem Biophys Res Commun 2011; 407: 692–698.

    Article  CAS  PubMed  Google Scholar 

  36. Jiang BH, Liu LZ . Role of mTOR in anticancer drug resistance: perspectives for improved drug treatment. Drug Resist Updat 2008; 11: 63–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yoshita M, Higuchi M, Takahashi M, Oie M, Tanaka Y, Fujii M . Activation of mTOR by human T-cell leukemia virus type 1 Tax is important for the transformation of mouse T cells to interleukin-2-independent growth. Cancer Sci 2012; 103: 369–374.

    Article  CAS  PubMed  Google Scholar 

  38. Benjamin D, Colombi M, Moroni C, Hall MN . Rapamycin passes the torch: a new generation of mTOR inhibitors. Nat Rev Drug Discov 2011; 10: 868–880.

    Article  CAS  PubMed  Google Scholar 

  39. Laplante M, Sabatini DM . mTOR signaling in growth control and disease. Cell 2012; 149: 274–293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hardt M, Chantaravisoot N, Tamanoi F . Activating mutations of TOR (target of rapamycin). Genes Cells 2011; 16: 141–151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Alavian SM, Ande SR, Coombs KM, Yeganeh B, Davoodpour P, Hashemi M et al. Virus-triggered autophagy in viral hepatitis—possible novel strategies for drug development. J Virol Hepat 2011; 18: 821–830.

    Article  CAS  Google Scholar 

  42. Shintani T, Klionsky DJ . Autophagy in health and disease: a double-edged sword. Science 2004; 306: 990–995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Levine B, Kroemer G . Autophagy in the pathogenesis of disease. Cell 2008; 132: 27–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Mizushima N, Levine B, Cuervo AM, Klionsky DJ . Autophagy fights disease through cellular self-digestion. Nature 2008; 451: 1069–1075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lee HK, Iwasaki A . Autophagy and antiviral immunity. Curr Opin Immunol 2008; 20: 23–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Taylor MP, Jackson WT . Viruses and arrested autophagosomes development. Autophagy 2009; 5: 870–871.

    Article  PubMed  Google Scholar 

  47. Kudchodkar SB, Levine B . Viruses and autophagy. Rev Med Virol 2009; 19: 359–378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Orvedahl A, Levine B . Autophagy in mammalian antiviral immunity. Curr Top Microbiol Immunol 2009; 335: 267–285.

    CAS  PubMed  Google Scholar 

  49. Kirkegaard K . Subversion of the cellular autophagy pathway by viruses. Curr Top Microbiol Immunol 2009; 335: 323–333.

    CAS  PubMed  Google Scholar 

  50. Liang XH, Kleeman LK, Jiang HH, Gordon G, Goldman JE, Berry G et al. Protection against fatal Sindbis virus encephalitis by Beclin, a novel Bcl-2-interacting protein. J Virol 1998; 72: 8586–8596.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Tallóczy Z, Jiang W, Virgin HW IV, Leib DA, Scheuner D, Kaufman RJ et al. Regulation of starvation- and virus-induced autophagy by the eIF2alpha kinase signaling pathway. Proc Natl Acad Sci USA 2002; 99: 190–195.

    Article  PubMed  Google Scholar 

  52. Orvedahl A, MacPherson S, Sumpter R Jr, Tallóczy Z, Zou Z, Levine B . Autophagy protects against Sindbis virus infection of the central nervous system. Cell Host Microbe 2010; 7: 115–127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chaumorcel M, Souquère S, Pierron G, Codogno P, Esclatine A . Human cytomegalovirus controls a new autophagy-dependent cellular antiviral defense mechanism. Autophagy 2008; 4: 46–54.

    Article  CAS  PubMed  Google Scholar 

  54. Chuluubaatar U, Roller R, Feldman ME, Brown S, Shokat KM, Mohr I . Constitutive mTORC1 activation by a herpesvirus Akt surrogate stimulates mRNA translation and Viral replication. Genes Dev 2010; 24: 2627–2639.

    Article  Google Scholar 

  55. Harhaj EW, Sun SC . IKKgamma serves as a docking subunit of the IkappaB kinase (IKK) and mediates interaction of IKK with the human T-cell leukemia virus Tax protein. J Biol Chem 1999; 274: 22911–22914.

    Article  CAS  PubMed  Google Scholar 

  56. Bex F, Yin MJ, Burny A, Gaynor RB . Differential transcriptional activation by human T-cell leukemia virus type 1 Tax mutants is mediated by distinct interactions with CREB binding protein and p300. Mol Cell Biol 1998; 18: 2392–2405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Li J, Liu J, Song J, Wang X, Weiss HL, Townsend CM Jr et al. mTORC1 inhibition increases neurotensin secretion and gene expression through activation of the MEK/ERK/c-Jun pathway in the human endocrine cell line BON. Am J Physiol Cell Physiol 2011; 301: 213–226.

    Article  Google Scholar 

  58. Ohshima T, Mukai R, Nakahara N, Matsumoto J, Isono O, Kobayashi Y et al. HTLV-1 basic leucine-zipper factor, HBZ, interacts with MafB and suppresses transcription through a Maf recognition element. J Cell Biochem 2010; 111: 187–194.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr H. Miyoshi for providing the lentivirus-based transfection system. This work was supported by a Grant-in-Aid for Scientific Research on Priority Areas ‘Integrative Research Toward the Conquest of Cancer’ from the Ministry of Education, Culture, Sports, Science and Technology of Japan. In addition, this work was supported, in part, by research funds from the Takeda Science Foundation, the Suzuken Memorial Foundation and the Japanese Leukemia Research Foundation. R. Mukai was supported by a Research Fellowship from JSPS for Young Scientists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Ohshima.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mukai, R., Ohshima, T. HTLV-1 HBZ positively regulates the mTOR signaling pathway via inhibition of GADD34 activity in the cytoplasm. Oncogene 33, 2317–2328 (2014). https://doi.org/10.1038/onc.2013.181

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.181

Keywords

This article is cited by

Search

Quick links