Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Small-molecule inhibition of CBP/catenin interactions eliminates drug-resistant clones in acute lymphoblastic leukemia

Abstract

Drug resistance in acute lymphoblastic leukemia (ALL) remains a major problem warranting new treatment strategies. Wnt/catenin signaling is critical for the self-renewal of normal hematopoietic progenitor cells. Deregulated Wnt signaling is evident in chronic and acute myeloid leukemia; however, little is known about ALL. Differential interaction of catenin with either the Kat3 coactivator CREBBP (CREB-binding protein (CBP)) or the highly homologous EP300 (p300) is critical to determine divergent cellular responses and provides a rationale for the regulation of both proliferation and differentiation by the Wnt signaling pathway. Usage of the coactivator CBP by catenin leads to transcriptional activation of cassettes of genes that are involved in maintenance of progenitor cell self-renewal. However, the use of the coactivator p300 leads to activation of genes involved in the initiation of differentiation. ICG-001 is a novel small-molecule modulator of Wnt/catenin signaling, which specifically binds to the N-terminus of CBP and not p300, within amino acids 1–110, thereby disrupting the interaction between CBP and catenin. Here, we report that selective disruption of the CBP/β- and γ-catenin interactions using ICG-001 leads to differentiation of pre-B ALL cells and loss of self-renewal capacity. Survivin, an inhibitor-of-apoptosis protein, was also downregulated in primary ALL after treatment with ICG-001. Using chromatin immunoprecipitation assay, we demonstrate occupancy of the survivin promoter by CBP that is decreased by ICG-001 in primary ALL. CBP mutations have been recently identified in a significant percentage of ALL patients, however, almost all of the identified mutations reported occur C-terminal to the binding site for ICG-001. Importantly, ICG-001, regardless of CBP mutational status and chromosomal aberration, leads to eradication of drug-resistant primary leukemia in combination with conventional therapy in vitro and significantly prolongs the survival of NOD/SCID mice engrafted with primary ALL. Therefore, specifically inhibiting CBP/catenin transcription represents a novel approach to overcome relapse in ALL.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

References

  1. Pui CH, Robison LL, Look AT . Acute lymphoblastic leukaemia. Lancet 2008; 371: 1030–1043.

    Article  CAS  PubMed  Google Scholar 

  2. Reya T, Duncan AW, Ailles L, Domen J, Scherer DC, Willert K et al. A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature 2003; 423: 409–414.

    Article  CAS  PubMed  Google Scholar 

  3. Luis TC, Naber BA, Roozen PP, Brugman MH, de Haas EF, Ghazvini M et al. Canonical wnt signaling regulates hematopoiesis in a dosage-dependent fashion. Cell Stem Cell 2011; 9: 345–356.

    Article  CAS  PubMed  Google Scholar 

  4. Chan WI, Hannah RL, Dawson MA, Pridans C, Foster D, Joshi A et al. The transcriptional coactivator Cbp regulates self-renewal and differentiation in adult hematopoietic stem cells. Mol Cell Biol 2011; 31: 5046–5060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang Y, Krivtsov AV, Sinha AU, North TE, Goessling W, Feng Z et al. The Wnt/beta-catenin pathway is required for the development of leukemia stem cells in AML. Science 2010; 327: 1650–1653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhao C, Blum J, Chen A, Kwon HY, Jung SH, Cook JM et al. Loss of beta-catenin impairs the renewal of normal and CML stem cells in vivo. Cancer Cell 2007; 12: 528–541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hu Y, Chen Y, Douglas L, Li S . beta-Catenin is essential for survival of leukemic stem cells insensitive to kinase inhibition in mice with BCR-ABL-induced chronic myeloid leukemia. Leukemia 2009; 23: 109–116.

    Article  CAS  PubMed  Google Scholar 

  8. Jamieson CH, Ailles LE, Dylla SJ, Muijtjens M, Jones C, Zehnder JL et al. Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N Engl J Med 2004; 351: 657–667.

    Article  CAS  PubMed  Google Scholar 

  9. Khan NI, Bradstock KF, Bendall LJ . Activation of Wnt/beta-catenin pathway mediates growth and survival in B-cell progenitor acute lymphoblastic leukaemia. Br J Haematol 2007; 138: 338–348.

    Article  CAS  PubMed  Google Scholar 

  10. Mazieres J, You L, He B, Xu Z, Lee AY, Mikami I et al. Inhibition of Wnt16 in human acute lymphoblastoid leukemia cells containing the t(1;19) translocation induces apoptosis. Oncogene 2005; 24: 5396–5400.

    Article  CAS  PubMed  Google Scholar 

  11. Park E, Gang EJ, Hsieh YT, Schaefer P, Chae S, Klemm L et al. Targeting survivin overcomes drug resistance in acute lymphoblastic leukemia. Blood 2011; 118: 2191–2199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Altieri DC . Survivin, cancer networks and pathway-directed drug discovery. Nat Rev Cancer 2008; 8: 61–70.

    Article  CAS  PubMed  Google Scholar 

  13. Tyner JW, Jemal AM, Thayer M, Druker BJ, Chang BH . Targeting survivin and p53 in pediatric acute lymphoblastic leukemia. Leukemia 2012; 26: 623–632.

    Article  CAS  PubMed  Google Scholar 

  14. Morrison DJ, Hogan LE, Condos G, Bhatla T, Germino N, Moskowitz NP et al. Endogenous knockdown of survivin improves chemotherapeutic response in ALL models. Leukemia 2012; 26: 271–279.

    Article  CAS  PubMed  Google Scholar 

  15. Reya T, Clevers H . Wnt signalling in stem cells and cancer. Nature 2005; 434: 843–850.

    Article  CAS  PubMed  Google Scholar 

  16. Takemaru KI, Moon RT . The transcriptional coactivator CBP interacts with beta-catenin to activate gene expression. J Cell Biol 2000; 149: 249–254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hecht A, Vleminckx K, Stemmler MP, van RF, Kemler R . The p300/CBP acetyltransferases function as transcriptional coactivators of beta-catenin in vertebrates. EMBO J 2000; 19: 1839–1850.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rebel VI, Kung AL, Tanner EA, Yang H, Bronson RT, Livingston DM . Distinct roles for CREB-binding protein and p300 in hematopoietic stem cell self-renewal. Proc Natl Acad Sci USA 2002; 99: 14789–14794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Teo JL, Ma H, Nguyen C, Lam C, Kahn M . Specific inhibition of CBP/beta-catenin interaction rescues defects in neuronal differentiation caused by a presenilin-1 mutation. Proc Natl Acad Sci USA 2005; 102: 12171–12176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kahn M . Symmetric division versus asymmetric division: a tale of two coactivators. Future Med Chem 2011; 3: 1745–1763.

    Article  CAS  PubMed  Google Scholar 

  21. Ma H, Nguyen C, Lee KS, Kahn M . Differential roles for the coactivators CBP and p300 on TCF/beta-catenin-mediated survivin gene expression. Oncogene 2005; 24: 3619–3631.

    Article  CAS  PubMed  Google Scholar 

  22. Emami KH, Nguyen C, Ma H, Kim DH, Jeong KW, Eguchi M et al. A small molecule inhibitor of beta-catenin/CREB-binding protein transcription [corrected]. Proc Natl Acad Sci USA 2004; 101: 12682–12687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kim YM, Ma H, Oehler VG, Gang EJ, Nguyen C, Masiello D et al. The gamma catenin/CBP complex maintains survivin transcription in beta-catenin deficient/depleted cancer cells. Curr Cancer Drug Targets 2011; 11: 213–225.

    Article  CAS  PubMed  Google Scholar 

  24. Muljo SA, Schlissel MS . A small molecule Abl kinase inhibitor induces differentiation of Abelson virus-transformed pre-B cell lines. Nat Immunol 2003; 4: 31–37.

    Article  CAS  PubMed  Google Scholar 

  25. Klein F, Feldhahn N, Mooster JL, Sprangers M, Hofmann WK, Wernet P et al. Tracing the pre-B to immature B cell transition in human leukemia cells reveals a coordinated sequence of primary and secondary IGK gene rearrangement, IGK deletion, and IGL gene rearrangement. J Immunol 2005; 174: 367–375.

    Article  CAS  PubMed  Google Scholar 

  26. Hardy RR, Hayakawa K . B cell development pathways. Annu Rev Immunol 2001; 19: 595–621.

    Article  CAS  PubMed  Google Scholar 

  27. Herzog S, Reth M, Jumaa H . Regulation of B-cell proliferation and differentiation by pre-B-cell receptor signalling. Nat Rev Immunol 2009; 9: 195–205.

    Article  CAS  PubMed  Google Scholar 

  28. Pear WS, Miller JP, Xu L, Pui JC, Soffer B, Quackenbush RC et al. Efficient and rapid induction of a chronic myelogenous leukemia-like myeloproliferative disease in mice receiving P210 bcr/abl-transduced bone marrow. Blood 1998; 92: 3780–3792.

    CAS  PubMed  Google Scholar 

  29. Chou TC, Talalay P . Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 1984; 22: 27–55.

    Article  CAS  PubMed  Google Scholar 

  30. Mullighan CG, Zhang J, Kasper LH, Lerach S, Payne-Turner D, Phillips LA et al. CREBBP mutations in relapsed acute lymphoblastic leukaemia. Nature 2011; 471: 235–239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang J, Mullighan CG, Harvey RC, Wu G, Chen X, Edmonson M et al. Key pathways are frequently mutated in high-risk childhood acute lymphoblastic leukemia: a report from the Children’s Oncology Group. Blood 2011; 118: 3080–3087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Logan CY, Nusse R . The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 2004; 20: 781–810.

    Article  CAS  PubMed  Google Scholar 

  33. Zheng X, Beissert T, Kukoc-Zivojnov N, Puccetti E, Altschmied J, Strolz C et al. Gamma-catenin contributes to leukemogenesis induced by AML-associated translocation products by increasing the self-renewal of very primitive progenitor cells. Blood 2004; 103: 3535–3543.

    Article  CAS  PubMed  Google Scholar 

  34. Gastaldi T, Bonvini P, Sartori F, Marrone A, Iolascon A, Rosolen A . Plakoglobin is differentially expressed in alveolar and embryonal rhabdomyosarcoma and is regulated by DNA methylation and histone acetylation. Carcinogenesis 2006; 27: 1758–1767.

    Article  CAS  PubMed  Google Scholar 

  35. Koch U, Wilson A, Cobas M, Kemler R, Macdonald HR, Radtke F . Simultaneous loss of beta- and gamma-catenin does not perturb hematopoiesis or lymphopoiesis. Blood 2008; 111: 160–164.

    Article  CAS  PubMed  Google Scholar 

  36. Marmorstein R . Structure and function of histone acetyltransferases. Cell Mol Life Sci 2001; 58: 693–703.

    Article  CAS  PubMed  Google Scholar 

  37. Yao TP, Oh SP, Fuchs M, Zhou ND, Ch’ng LE, Newsome D et al. Gene dosage-dependent embryonic development and proliferation defects in mice lacking the transcriptional integrator p300. Cell 1998; 93: 361–372.

    Article  CAS  PubMed  Google Scholar 

  38. Tanaka Y, Naruse I, Hongo T, Xu M, Nakahata T, Maekawa T et al. Extensive brain hemorrhage and embryonic lethality in a mouse null mutant of CREB-binding protein. Mech Dev 2000; 95: 133–145.

    Article  CAS  PubMed  Google Scholar 

  39. Kumar SR, Scehnet JS, Ley EJ, Singh J, Krasnoperov V, Liu R et al. Preferential induction of EphB4 over EphB2 and its implication in colorectal cancer progression. Cancer Res 2009; 69: 3736–3745.

    Article  CAS  PubMed  Google Scholar 

  40. Kawasaki H, Taira K, Yokoyama KK . Functional analysis of the transcriptional coactivators p300 and CBP using ribozyme. Nucleic Acids Symp Ser 1999; 42: 263–264.

    Article  CAS  Google Scholar 

  41. Xu W, Fukuyama T, Ney PA, Wang D, Rehg J, Boyd K et al. Global transcriptional coactivators CREB-binding protein and p300 are highly essential collectively but not individually in peripheral B cells. Blood 2006; 107: 4407–4416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ramos YF, Hestand MS, Verlaan M, Krabbendam E, Ariyurek Y, van GM et al. Genome-wide assessment of differential roles for p300 and CBP in transcription regulation. Nucleic Acids Res 2010; 38: 5396–5408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Leung CG, Xu Y, Mularski B, Liu H, Gurbuxani S, Crispino JD . Requirements for survivin in terminal differentiation of erythroid cells and maintenance of hematopoietic stem and progenitor cells. J Exp Med 2007; 204: 1603–1611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Takahashi-Yanaga F, Kahn M . Targeting Wnt signaling: can we safely eradicate cancer stem cells? Clin Cancer Res 2010; 16: 3153–3162.

    Article  CAS  PubMed  Google Scholar 

  45. Takebe N, Harris PJ, Warren RQ, Ivy SP . Targeting cancer stem cells by inhibiting Wnt, Notch, and Hedgehog pathways. Nat Rev Clin Oncol 2011; 8: 97–106.

    Article  CAS  PubMed  Google Scholar 

  46. Verkaar F, van der SM, Blankesteijn WM, van der Doelen AA, Zaman GJ . Discovery of novel small molecule activators of beta-catenin signaling. PLoS One 2011; 6: e19185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Blough RI, Petrij F, Dauwerse JG, Milatovich-Cherry A, Weiss L, Saal HM et al. Variation in microdeletions of the cyclic AMP-responsive element-binding protein gene at chromosome band 16p13.3 in the Rubinstein-Taybi syndrome. Am J Med Genet 2000; 90: 29–34.

    Article  CAS  PubMed  Google Scholar 

  48. Petrij F, Giles RH, Dauwerse HG, Saris JJ, Hennekam RC, Masuno M et al. Rubinstein-Taybi syndrome caused by mutations in the transcriptional co-activator CBP. Nature 1995; 376: 348–351.

    Article  CAS  PubMed  Google Scholar 

  49. Pasqualucci L, Trifonov V, Fabbri G, Ma J, Rossi D, Chiarenza A et al. Analysis of the coding genome of diffuse large B-cell lymphoma. Nat Genet 2011; 43: 830–837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Spencer VA, Sun JM, Li L, Davie JR . Chromatin immunoprecipitation: a tool for studying histone acetylation and transcription factor binding. Methods 2003; 31: 67–75.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants from: William Lawrence and Blanche Hughes Foundation, Concern Foundation, Nautica Triathlon and the American Cancer Society and R01CA172896 (YMK); and USC Norris Comprehensive Cancer Center Support Grant P30 CA014089 (MK); R01CA137060, R01CA139032, R01CA157644 (MM). EMC is supported by a CSL Behring Research Chair and a Canada Research Chair in Endothelial Cell Biology and by grants from the Canadian Institutes for Health Research (CIHR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Kahn.

Ethics declarations

Competing interests

MK owns stock and is a consultant for Prism Pharmaceuticals. The other authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gang, E., Hsieh, YT., Pham, J. et al. Small-molecule inhibition of CBP/catenin interactions eliminates drug-resistant clones in acute lymphoblastic leukemia. Oncogene 33, 2169–2178 (2014). https://doi.org/10.1038/onc.2013.169

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.169

Keywords

This article is cited by

Search

Quick links