Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Glioma tumor grade correlates with parkin depletion in mutant p53-linked tumors and results from loss of function of p53 transcriptional activity

Abstract

Gliomas represent the most frequent form of primary brain tumors in adults, the prognosis of which remains extremely poor. Inactivating mutations on the tumor suppressor TP53 were proposed as a key etiological trigger of glioma development. p53 has been recently identified as a transcriptional target of parkin. Interestingly, somatic mutations on parkin have also been linked to glioma genesis. We examined the possibility that a disruption of a functional interaction between p53 and parkin could contribute to glioma development in samples devoid of somatic parkin mutations or genetic allele deletion. We show here that parkin levels inversely correlate to brain tumor grade and p53 levels in oligodendrogliomas, mixed gliomas and glioblastomas. We demonstrate that p53 levels negatively and positively correlate to bax and Bcl2 respectively, underlying a loss of p53 transcriptional activity in all types of glial tumors. Using various cell models lacking p53 or harboring either transcriptionally inactive or dominant negative p53, as well as in p53 knockout mice brain, we establish that p53 controls parkin promoter transactivation, mRNA and protein levels. Furthermore, we document an increase of parkin expression in mice brain after p53-bearing viral infection. Finally, both cancer-related p53 inactivating mutations and deletion of a consensus p53 binding sequence located on parkin promoter abolish p53-mediated control of parkin transcription, demonstrating that p53 regulates parkin transcription via its DNA binding properties. In conclusion, our work delineates a functional interplay between mutated p53 and parkin in glioma genesis that is disrupted by cancer-linked pathogenic mutations. It also allows envisioning parkin as a novel biomarker of glioma biopsies enabling to follow the progression of this type of cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Furnari FB, Fenton T, Bachoo RM, Mukasa A, Stommel JM, Stegh A et al. Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev 2007; 21: 2683–2710.

    Article  CAS  Google Scholar 

  2. Bourdon JC, De Laurenzi V, Melino G, Lane DP . p53: 25 years of recherche and more questions to answer. Cell Death Differ 2003; 10: 397–399.

    Article  CAS  Google Scholar 

  3. Lane DP . Cancer. p53, guardian of the genome. Nature 1992; 358: 15–16.

    Article  CAS  Google Scholar 

  4. Brown CJ, Lain S, Verma CS, Fersht AR, Lane DP . Awakening guardian angels: drugging the p53 pathway. Nat Rev Cancer 2009; 9: 862–873.

    Article  CAS  Google Scholar 

  5. Lim YP, Lim TT, Chan YL, Song AC, Yeo BH, Vojtesek B et al. The p53 knowledgebase: an integrated information resource for p53 research. Oncogene 2007; 26: 1517–1521.

    Article  CAS  Google Scholar 

  6. Asker C, Wiman KG, Selivanova G . p53-induced apoptosis as a safeguard against cancer. Biochem Biophys Res Commun 1999; 265: 1–6.

    Article  CAS  Google Scholar 

  7. Ohgaki H, Eibl RH, Wiestler OD, Yasargil MG, Newcomb EW, Kleihues P . p53 mutations in nonastrocytic human brain tumors. Cancer Res 1991; 51: 6202–6205.

    CAS  PubMed  Google Scholar 

  8. Nayak A, Ralte AM, Sharma MC, Singh VP, Mahapatra AK, Mehta VS et al. p53 protein alterations in adult astrocytic tumors and oligodendrogliomas. Neurol India 2004; 52: 228–232.

    PubMed  Google Scholar 

  9. Ohgaki H, Kleihues P . Genetic pathways to primary and secondary glioblastoma. Am J Pathol 2007; 170: 1445–1453.

    Article  CAS  Google Scholar 

  10. Maintz D, Fiedler K, Koopmann J, Rollbrocker B, Nechev S, Lenartz D et al. Molecular genetic evidence for subtypes of oligoastrocytomas. J Neuropathol Exp Neurol 1997; 56: 1098–1104.

    Article  CAS  Google Scholar 

  11. Deguin-Chambon V, Vacher M, Jullien M, May E, Bourdon JC . Direct transactivation of c-Ha-Ras gene by p53: evidence for its involvement in p53 transactivation activity and p53-mediated apoptosis. Oncogene 2000; 19: 5831–5841.

    Article  CAS  Google Scholar 

  12. Cesari R, Martin ES, Calin GA, Pentimalli F, Bichi R, McAdams H et al. Parkin, a gene implicated in autosomal recessive juvenile parkinsonism, is a candidate tumor suppressor gene on chromosome 6q25-q27. Proc Natl Acad Sci USA 2003; 100: 5956–5961.

    Article  CAS  Google Scholar 

  13. Letessier A, Garrido-Urbani S, Ginestier C, Fournier G, Esterni B, Monville F et al. Correlated break at PARK2/FRA6E and loss of AF-6/Afadin protein expression are associated with poor outcome in breast cancer. Oncogene 2007; 26: 298–307.

    Article  CAS  Google Scholar 

  14. Poulogiannis G, McIntyre RE, Dimitriadi M, Apps JR, Wilson CH, Ichimura K et al. PARK2 deletions occur frequently in sporadic colorectal cancer and accelerate adenoma development in Apc mutant mice. Proc Natl Acad Sci USA 2010; 107: 15145–15150.

    Article  CAS  Google Scholar 

  15. Fujiwara M, Marusawa H, Wang HQ, Iwai A, Ikeuchi K, Imai Y et al. Parkin as a tumor suppressor gene for hepatocellular carcinoma. Oncogene 2008; 27: 6002–6011.

    Article  CAS  Google Scholar 

  16. Veeriah S, Taylor BS, Meng S, Fang F, Yilmaz E, Vivanco I et al. Somatic mutations of the Parkinson's disease-associated gene PARK2 in glioblastoma and other human malignancies. Nat Genet 2010; 42: 77–82.

    Article  CAS  Google Scholar 

  17. da Costa CA, Sunyach C, Giaime E, West A, Corti O, Brice A et al. Transcriptional repression of p53 by parkin and impairment by mutations associated with autosomal recessive juvenile Parkinson's disease. Nat Cell Biol 2009; 11: 1370–1375.

    Article  Google Scholar 

  18. Rotter V . p53, a transformation-related cellular-encoded protein, can be used as a biochemical marker for the detection of primary mouse tumor cells. Proc Natl Acad Sci USA 1983; 80: 2613–2617.

    Article  CAS  Google Scholar 

  19. Miyashita T, reed JC . Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 1995; 80: 293–299.

    Article  CAS  Google Scholar 

  20. Miyashita T, Harigai M, Hanada M, Reed JC . Identification of a p53-dependent negative response element in the bcl-2 gene. Cancer Res 1994; 54: 3131–3135.

    CAS  PubMed  Google Scholar 

  21. Basu A, Haldar S . The relationship between BcI2, Bax and p53: consequences for cell cycle progression and cell death. Mol Hum Reprod 1998; 4: 1099–1109.

    Article  CAS  Google Scholar 

  22. Hemann MT, Lowe SW . The p53-Bcl-2 connection. Cell Death Differ 2006; 13: 1256–1259.

    Article  CAS  Google Scholar 

  23. Zinkel S, Gross A, Yang E . BCL2 family in DNA damage and cell cycle control. Cell Death Differ 2006; 13: 1351–1359.

    Article  CAS  Google Scholar 

  24. Miyashita T, Krajewski S, Krajewska M, Wang HG, Lin HK, Liebermann DA et al. Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. Oncogene 1994; 9: 1799–1805.

    CAS  Google Scholar 

  25. Watanabe K, Sato K, Biernat W, Tachibana O, von Ammon K, Ogata N et al. Incidence and timing of p53 mutations during astrocytoma progression in patients with multiple biopsies. Clin Cancer Res 1997; 3: 523–530.

    CAS  PubMed  Google Scholar 

  26. Nozaki M, Tada M, Kobayashi H, Zhang CL, Sawamura Y, Abe H et al. Roles of the functional loss of p53 and other genes in astrocytoma tumorigenesis and progression. Neuro Oncol 1999; 1: 124–137.

    Article  CAS  Google Scholar 

  27. Wang F, Denison S, Lai JP, Philips LA, Montoya D, Kock N et al. Parkin gene alterations in hepatocellular carcinoma. Genes Chromosomes Cancer 2004; 40: 85–96.

    Article  CAS  Google Scholar 

  28. Henn IH, Gostner JM, Lackner P, Tatzelt J, Winklhofer KF . Pathogenic mutations inactivate parkin by distinct mechanisms. J Neurochem 2005; 92: 114–122.

    Article  CAS  Google Scholar 

  29. Soussi T, Hamroun D, Hjortsberg L, Rubio-Nevado JM, Fournier JL, Beroud C . MUT-TP53 2.0: a novel versatile matrix for statistical analysis of TP53 mutations in human cancer. Hum Mutat 2010; 31: 1020–1025.

    Article  CAS  Google Scholar 

  30. Edlund K, Larsson O, Ameur A, Bunikis I, Gyllensten U, Leroy B et al. Data-driven unbiased curation of the TP53 tumor suppressor gene mutation database and validation by ultradeep sequencing of human tumors. Proc Natl Acad Sci USA 2012; 109: 9551–9556.

    Article  CAS  Google Scholar 

  31. Costa SL, Paillaud E, Fages C, Rochette-Egly C, Plassat JL, Jouault H et al. Effects of a novel synthetic retinoid on malignant glioma in vitro: inhibition of cell proliferation, induction of apoptosis and differentiation. Eur J Cancer 2001; 37: 520–530.

    Article  CAS  Google Scholar 

  32. Hainaut P, Soussi T, Shomer B, Hollstein M, Greenblatt M, Hovig E et al. Database of p53 gene somatic mutations in human tumors and cell lines: updated compilation and future prospects. Nucleic Acids Res 1997; 25: 151–157.

    Article  CAS  Google Scholar 

  33. Petitjean A, Mathe E, Kato S, Ishioka C, Tavtigian SV, Hainaut P et al. Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: lessons from recent developments in the IARC TP53 database. Hum Mutat 2007; 28: 622–629.

    Article  CAS  Google Scholar 

  34. Ginsberg D, Oren M, Yaniv M, Piette J . Protein-binding elements in the promoter region of the mouse p53 gene. Oncogene 1990; 5: 1285–1290.

    CAS  PubMed  Google Scholar 

  35. Kamijo T, Zindy F, Roussel MF, Quelle DE, Downing JR, Ashmun RA et al. Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19ARF. Cell 1997; 91: 649–659.

    Article  CAS  Google Scholar 

  36. Brosh R, Rotter V . When mutants gain new powers: news from the mutant p53 field. Nat Rev Cancer 2009; 9: 701–713.

    Article  CAS  Google Scholar 

  37. Zhang C, Lin M, Wu R, Wang X, Yang B, Levine AJ et al. Parkin, a p53 target gene, mediates the role of p53 in glucose metabolism and the Warburg effect. Proc Natl Acad Sci USA 2011; 108: 16259–16264.

    Article  CAS  Google Scholar 

  38. Picchio MC, Martin ES, Cesari R, Calin GA, Yendamuri S, Kuroki T et al. Alterations of the tumor suppressor gene Parkin in non-small cell lung cancer. Clin Cancer Res 2004; 10: 2720–2724.

    Article  CAS  Google Scholar 

  39. Agirre X, Roman-Gomez J, Vazquez I, Jimenez-Velasco A, Garate L, Montiel-Duarte C et al. Abnormal methylation of the common PARK2 and PACRG promoter is associated with downregulation of gene expression in acute lymphoblastic leukemia and chronic myeloid leukemia. Int J Cancer 2006; 118: 1945–1953.

    Article  CAS  Google Scholar 

  40. Shimura H, Hattori N, Kubo S, Mizuno Y, Asakawa S, Minoshima S et al. Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat Genet 2000; 25: 302–305.

    Article  CAS  Google Scholar 

  41. Fulci G, Ishii N, Van Meir EG . p53 and brain tumors: from gene mutations to gene therapy. Brain Pathol 1998; 8: 599–613.

    Article  CAS  Google Scholar 

  42. Watanabe K, Tachibana O, Sata K, Yonekawa Y, Kleihues P, Ohgaki H . Overexpression of the EGF receptor and p53 mutations are mutually exclusive in the evolution of primary and secondary glioblastomas. Brain Pathol 1996; 6: 217–223 discussion 23-4.

    Article  CAS  Google Scholar 

  43. Weller M, Felsberg J, Hartmann C, Berger H, Steinbach JP, Schramm J et al. Molecular predictors of progression-free and overall survival in patients with newly diagnosed glioblastoma: a prospective translational study of the German Glioma Network. J Clin Oncol 2009; 27: 5743–5750.

    Article  CAS  Google Scholar 

  44. Sigal A, Rotter V . Oncogenic mutations of the p53 tumor suppressor: the demons of the guardian of the genome. Cancer Res 2000; 60: 6788–6793.

    CAS  Google Scholar 

  45. Haupt Y, Maya R, Kazaz A, Oren M . Mdm2 promotes the rapid degradation of p53. Nature 1997; 387: 296–299.

    CAS  Google Scholar 

  46. Midgley CA, Lane DP . p53 protein stability in tumour cells is not determined by mutation but is dependent on Mdm2 binding. Oncogene 1997; 15: 1179–1189.

    Article  CAS  Google Scholar 

  47. Hollstein M, Sidransky D, Vogelstein B, Harris CC . p53 mutations in human cancers. Science 1991; 253: 49–53.

    Article  CAS  Google Scholar 

  48. Yeo CW, Ng FS, Chai C, Tan JM, Koh GR, Chong YK et al. Parkin pathway activation mitigates glioma cell proliferation and predicts patient survival. Cancer Res 2012; 72: 2543–2553.

    Article  CAS  Google Scholar 

  49. Pardossi-Piquard R, Petit A, Kawarai T, Sunyach C, Alves da costa C, Vincent B et al. Presenilin-dependent transcriptional control of the Aβ-degrading enzyme neprilysin by intracellular domains of β APP and APLP. Neuron 2005; 46: 541–554.

    Article  CAS  Google Scholar 

  50. West AB, Lockhart PJ, O'Farell C, Farrer MJ . Identification of a novel gene linked to parkin via a bi-directional promoter. J Mol Biol 2003; 326: 11–19.

    Article  CAS  Google Scholar 

  51. Alves da Costa C, Sunyach C, Pardossi-Piquard R, Sevalle J, Vincent B, Boyer N et al. Presenilin-dependent gamma-secretase-mediated control of p53-associated cell death in Alzheimer's disease. J Neurosci 2006; 26: 6377–6385.

    Article  CAS  Google Scholar 

  52. Idbaih A, Marie Y, Pierron G, Brennetot C, Hoang-Xuan K, Kujas M et al. Two types of chromosome 1p losses with opposite significance in gliomas. Ann Neurol 2005; 58: 483–487.

    Article  CAS  Google Scholar 

  53. Idbaih A, Marie Y, Lucchesi C, Pierron G, Manie E, Raynal V et al. BAC array CGH distinguishes mutually exclusive alterations that define clinicogenetic subtypes of gliomas. Int J Cancer 2008; 122: 1778–1786.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Drs Roussel, Bourdon and Serrano are thanked for providing us with p53 knockout cells, MCF-7 cells and mice brains. Drs West and Oren are acknowledged for providing us with parkin-luciferase and PG13 constructs. JV was supported by AMPA (Association Monégasque Pour la recherche sur la Maladie d’Alzheimer) and ARC («Association pour la recherche contre le cancer»). This work was supported by the ‘Fondation pour la Recherche Médicale’ and by the ‘Conseil Général des Alpes Maritimes’. This work has been developed and supported through the LABEX (excellence laboratory, program investment for the future) DISTALZ (Development of Innovative Strategies for a Transdisciplinary approach to Alzheimer’s disease). Cristine Alves da Costa is recipient of a Hospital Contract for Translational Research (CHRT) between INSERM and the Hospices Civils de Lyon.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to F Checler or C Alves da Costa.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Viotti, J., Duplan, E., Caillava, C. et al. Glioma tumor grade correlates with parkin depletion in mutant p53-linked tumors and results from loss of function of p53 transcriptional activity. Oncogene 33, 1764–1775 (2014). https://doi.org/10.1038/onc.2013.124

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.124

Keywords

This article is cited by

Search

Quick links