Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

KIT-D816V oncogenic activity is controlled by the juxtamembrane docking site Y568-Y570

Abstract

Mutation of KIT receptor tyrosine kinase at residue D816 results in ligand-independent constitutive kinase activity. This mutation occurs in most patients with mastocytosis, a myeloproliferative neoplasm, and is detected at lower frequencies in acute myeloid leukemia and in germ cell tumors. Other KIT mutations occur in gastrointestinal stromal tumors (GIST) and mucosal melanoma. KIT is considered as a bona fide therapeutic target as c-kit mutations are driving oncogenes in these pathologies. However, several evidences suggest that KIT-D816V mutant is not as aggressive as other KIT mutants. Here, we show that an intracellular docking site in the juxtamembrane region of KIT maintains a negative regulation on KIT-D816V transforming potential. Sixteen signaling proteins were shown to interact with this motif. We further demonstrate that mutation of this site results in signaling modifications, altered gene expression profile and increased transforming activity of KIT-D816V mutant. This result was unexpected as mutations of the homologous sites on wild-type (WT) KIT, or on the related oncogenic FLT3-ITD receptor, impair their function. Our results support the hypothesis that, KIT-D816V mutation is a mild oncogenic event that is sufficient to confer partial transforming properties, but requires additional mutations to acquire its full transforming potential.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Hirota S, Isozaki K, Moriyama Y, Hashimoto K, Nishida T, Ishiguro S et al. Gain-of-function mutations of c-kit in human gastrointestinal stromal tumors. Science 1998; 279: 577–580.

    Article  CAS  Google Scholar 

  2. Longley BJ, Metcalfe DD, Tharp M, Wang X, Tyrrell L, Lu SZ et al. Activating and dominant inactivating c-KIT catalytic domain mutations in distinct clinical forms of human mastocytosis. Proc Natl Acad Sci USA 1999; 96: 1609–1614.

    Article  CAS  Google Scholar 

  3. Valent P, Akin C, Sperr WR, Mayerhofer M, Fodinger M, Fritsche-Polanz R et al. Mastocytosis: pathology, genetics, and current options for therapy. Leuk Lymphoma 2005; 46: 35–48.

    Article  CAS  Google Scholar 

  4. Beghini A, Ripamonti CB, Cairoli R, Cazzaniga G, Colapietro P, Elice F et al. KIT activating mutations: incidence in adult and pediatric acute myeloid leukemia, and identification of an internal tandem duplication. Haematologica 2004; 89: 920–925.

    CAS  Google Scholar 

  5. Cairoli R, Beghini A, Grillo G, Nadali G, Elice F, Ripamonti CB et al. Prognostic impact of c-KIT mutations in core binding factor leukemias: an Italian retrospective study. Blood 2006; 107: 3463–3468.

    Article  CAS  Google Scholar 

  6. Curtin JA, Busam K, Pinkel D, Bastian BC . Somatic activation of KIT in distinct subtypes of melanoma. J Clin Oncol 2006; 24: 4340–4346.

    Article  CAS  Google Scholar 

  7. Kemmer K, Corless CL, Fletcher JA, McGreevey L, Haley A, Griffith D et al. KIT mutations are common in testicular seminomas. Am J Pathol 2004; 164: 305–313.

    Article  CAS  Google Scholar 

  8. Looijenga LH, de Leeuw H, van Oorschot M, van Gurp RJ, Stoop H, Gillis AJ et al. Stem cell factor receptor (c-KIT) codon 816 mutations predict development of bilateral testicular germ-cell tumors. Cancer Res 2003; 63: 7674–7678.

    CAS  PubMed  Google Scholar 

  9. Tian Q, Frierson HF, Krystal GW, Moskaluk CA . Activating c-kit gene mutations in human germ cell tumors. Am J Pathol 1999; 154: 1643–1647.

    Article  CAS  Google Scholar 

  10. Hongyo T, Li T, Syaifudin M, Baskar R, Ikeda H, Kanakura Y et al. Specific c-kit mutations in sinonasal natural killer/T-cell lymphoma in China and Japan. Cancer Res 2000; 60: 2345–2347.

    CAS  PubMed  Google Scholar 

  11. Lim KH, Tefferi A, Lasho TL, Finke C, Patnaik M, Butterfield JH et al. Systemic mastocytosis in 342 consecutive adults: survival studies and prognostic factors. Blood 2009; 113: 5727–5736.

    Article  CAS  Google Scholar 

  12. Chan PM, Ilangumaran S, La Rose J, Chakrabartty A, Rottapel R . Autoinhibition of the kit receptor tyrosine kinase by the cytosolic juxtamembrane region. Mol Cell Biol 2003; 23: 3067–3078.

    Article  CAS  Google Scholar 

  13. Yuzawa S, Opatowsky Y, Zhang Z, Mandiyan V, Lax I, Schlessinger J . Structural basis for activation of the receptor tyrosine kinase KIT by stem cell factor. Cell 2007; 130: 323–334.

    Article  CAS  Google Scholar 

  14. Bodemer C, Hermine O, Palmerini F, Yang Y, Grandpeix-Guyodo C, Leventhal PS et al. Pediatric mastocytosis is a clonal disease associated with D816V and other activating c-KIT mutations. J Invest Dermatol 2010; 130: 804–815.

    Article  CAS  Google Scholar 

  15. Goemans BF, Zwaan CM, Miller M, Zimmermann M, Harlow A, Meshinchi S et al. Mutations in KIT and RAS are frequent events in pediatric core-binding factor acute myeloid leukemia. Leukemia 2005; 19: 1536–1542.

    Article  CAS  Google Scholar 

  16. Yang Y, Letard S, Borge L, Chaix A, Hanssens K, Lopez S et al. Pediatric mastocytosis-associated KIT extracellular domain mutations exhibit different functional and signaling properties compared with KIT-phosphotransferase domain mutations. Blood 2010; 116: 1114–1123.

    Article  CAS  Google Scholar 

  17. Mayerhofer M, Gleixner KV, Hoelbl A, Florian S, Hoermann G, Aichberger KJ et al. Unique effects of KIT D816V in BaF3 cells: induction of cluster formation, histamine synthesis, and early mast cell differentiation antigens. J Immunol 2008; 180: 5466–5476.

    Article  CAS  Google Scholar 

  18. Zappulla JP, Dubreuil P, Desbois S, Letard S, Hamouda NB, Daeron M et al. Mastocytosis in mice expressing human Kit receptor with the activating Asp816Val mutation. J Exp Med 2005; 202: 1635–1641.

    Article  CAS  Google Scholar 

  19. Rubin BP, Antonescu CR, Scott-Browne JP, Comstock ML, Gu Y, Tanas MR et al. A knock-in mouse model of gastrointestinal stromal tumor harboring kit K641E. Cancer Res 2005; 65: 6631–6639.

    Article  CAS  Google Scholar 

  20. Sommer G, Agosti V, Ehlers I, Rossi F, Corbacioglu S, Farkas J et al. Gastrointestinal stromal tumors in a mouse model by targeted mutation of the Kit receptor tyrosine kinase. Proc Natl Acad Sci USA 2003; 100: 6706–6711.

    Article  CAS  Google Scholar 

  21. Casteran N, De Sepulveda P, Beslu N, Aoubala M, Letard S, Lecocq E et al. Signal transduction by several KIT juxtamembrane domain mutations. Oncogene 2003; 22: 4710–4722.

    Article  CAS  Google Scholar 

  22. Agosti V, Corbacioglu S, Ehlers I, Waskow C, Sommer G, Berrozpe G et al. Critical role for Kit-mediated Src kinase but not PI 3-kinase signaling in pro T and pro B cell development. J Exp Med 2004; 199: 867–878.

    Article  CAS  Google Scholar 

  23. Agosti V, Karur V, Sathyanarayana P, Besmer P, Wojchowski DM . A KIT juxtamembrane PY567 -directed pathway provides nonredundant signals for erythroid progenitor cell development and stress erythropoiesis. Exp Hematol 2009; 37: 159–171.

    Article  CAS  Google Scholar 

  24. Kimura Y, Jones N, Kluppel M, Hirashima M, Tachibana K, Cohn JB et al. Targeted mutations of the juxtamembrane tyrosines in the Kit receptor tyrosine kinase selectively affect multiple cell lineages. Proc Natl Acad Sci USA 2004; 101: 6015–6020.

    Article  CAS  Google Scholar 

  25. Voisset E, Lopez S, Chaix A, Vita M, George C, Dubreuil P et al. FES kinase participates in KIT-ligand induced chemotaxis. Biochem Biophys Res Commun 2010; 393: 174–178.

    Article  CAS  Google Scholar 

  26. Kozlowski M, Larose L, Lee F, Le DM, Rottapel R, Siminovitch KA . SHP-1 binds and negatively modulates the c-Kit receptor by interaction with tyrosine 569 in the c-Kit juxtamembrane domain. Mol Cell Biol 1998; 18: 2089–2099.

    Article  CAS  Google Scholar 

  27. Price DJ, Rivnay B, Fu Y, Jiang S, Avraham S, Avraham H . Direct association of Csk homologous kinase (CHK) with the diphosphorylated site Tyr568/570 of the activated c-KIT in megakaryocytes. J Biol Chem 1997; 272: 5915–5920.

    Article  CAS  Google Scholar 

  28. Simon C, Dondi E, Chaix A, de Sepulveda P, Kubiseski TJ, Varin-Blank N et al. Lnk adaptor protein down-regulates specific Kit-induced signaling pathways in primary mast cells. Blood 2008; 112: 4039–4047.

    Article  CAS  Google Scholar 

  29. Bougherara H, Subra F, Crepin R, Tauc P, Auclair C, Poul MA . The aberrant localization of oncogenic kit tyrosine kinase receptor mutants is reversed on specific inhibitory treatment. Mol Cancer Res 2009; 7: 1525–1533.

    Article  CAS  Google Scholar 

  30. Xiang Z, Kreisel F, Cain J, Colson A, Tomasson MH . Neoplasia driven by mutant c-KIT is mediated by intracellular, not plasma membrane, receptor signaling. Mol Cell Biol 2007; 27: 267–282.

    Article  CAS  Google Scholar 

  31. Tan BL, Hong L, Munugalavadla V, Kapur R . Functional and biochemical consequences of abrogating the activation of multiple diverse early signaling pathways in Kit. Role for Src kinase pathway in Kit-induced cooperation with erythropoietin receptor. J Biol Chem 2003; 278: 11686–11695.

    Article  CAS  Google Scholar 

  32. Sun J, Pedersen M, Ronnstrand L . The D816V mutation of c-Kit circumvents a requirement for Src family kinases in c-Kit signal transduction. J Biol Chem 2009; 284: 11039–11047.

    Article  CAS  Google Scholar 

  33. Hong L, Munugalavadla V, Kapur R . c-Kit-mediated overlapping and unique functional and biochemical outcomes via diverse signaling pathways. Mol Cell Biol 2004; 24: 1401–1410.

    Article  CAS  Google Scholar 

  34. Ueda S, Mizuki M, Ikeda H, Tsujimura T, Matsumura I, Nakano K et al. Critical roles of c-Kit tyrosine residues 567 and 719 in stem cell factor-induced chemotaxis: contribution of src family kinase and PI3-kinase on calcium mobilization and cell migration. Blood 2002; 99: 3342–3349.

    Article  CAS  Google Scholar 

  35. Chaix A, Lopez S, Voisset E, Gros L, Dubreuil P, De Sepulveda P . Mechanisms of STAT protein activation by oncogenic KIT mutants in neoplastic mast cells. J Biol Chem 2011; 286: 5956–5966.

    Article  CAS  Google Scholar 

  36. Masson K, Ronnstrand L . Oncogenic signaling from the hematopoietic growth factor receptors c-Kit and Flt3. Cell Signal 2009; 21: 1717–1726.

    Article  CAS  Google Scholar 

  37. Deberry C, Mou S, Linnekin D . Stat1 associates with c-kit and is activated in response to stem cell factor. Biochem J 1997; 327 (Pt 1): 73–80.

    Article  CAS  Google Scholar 

  38. Sattler M, Salgia R, Shrikhande G, Verma S, Pisick E, Prasad KV et al. Steel factor induces tyrosine phosphorylation of CRKL and binding of CRKL to a complex containing c-kit, phosphatidylinositol 3-kinase, and p120(CBL). J Biol Chem 1997; 272: 10248–10253.

    Article  CAS  Google Scholar 

  39. Voisset E, Lopez S, Dubreuil P, De Sepulveda P . The tyrosine kinase FES is an essential effector of KITD816V proliferation signal. Blood 2007; 110: 2593–2599.

    Article  CAS  Google Scholar 

  40. Lennartsson J, Blume-Jensen P, Hermanson M, Ponten E, Carlberg M, Ronnstrand L . Phosphorylation of Shc by Src family kinases is necessary for stem cell factor receptor/c-kit mediated activation of the Ras/MAP kinase pathway and c-fos induction. Oncogene 1999; 18: 5546–5553.

    Article  CAS  Google Scholar 

  41. Timokhina I, Kissel H, Stella G, Besmer P . Kit signaling through PI 3-kinase and Src kinase pathways: an essential role for Rac1 and JNK activation in mast cell proliferation. Embo J 1998; 17: 6250–6262.

    Article  CAS  Google Scholar 

  42. Rocnik JL, Okabe R, Yu JC, Lee BH, Giese N, Schenkein DP et al. Roles of tyrosine 589 and 591 in STAT5 activation and transformation mediated by FLT3-ITD. Blood 2006; 108: 1339–1345.

    Article  CAS  Google Scholar 

  43. Vempati S, Reindl C, Wolf U, Kern R, Petropoulos K, Naidu VM et al. Transformation by oncogenic mutants and ligand-dependent activation of FLT3 wild-type requires the tyrosine residues 589 and 591. Clin Cancer Res 2008; 14: 4437–4445.

    Article  CAS  Google Scholar 

  44. Glover HR, Baker DA, Celetti A, Dibb NJ . Selection of activating mutations of c-fms in FDC-P1 cells. Oncogene 1995; 11: 1347–1356.

    CAS  PubMed  Google Scholar 

  45. Buettner R, Mesa T, Vultur A, Lee F, Jove R . Inhibition of Src family kinases with dasatinib blocks migration and invasion of human melanoma cells. Mol Cancer Res 2008; 6: 1766–1774.

    Article  CAS  Google Scholar 

  46. Lievens PM, Mutinelli C, Baynes D, Liboi E . The kinase activity of fibroblast growth factor receptor 3 with activation loop mutations affects receptor trafficking and signaling. J Biol Chem 2004; 279: 43254–43260.

    Article  CAS  Google Scholar 

  47. Schmidt-Arras DE, Bohmer A, Markova B, Choudhary C, Serve H, Bohmer FD . Tyrosine phosphorylation regulates maturation of receptor tyrosine kinases. Mol Cell Biol 2005; 25: 3690–3703.

    Article  CAS  Google Scholar 

  48. Furitsu T, Tsujimura T, Tono T, Ikeda H, Kitayama H, Koshimizu U et al. Identification of mutations in the coding sequence of the proto-oncogene c-kit in a human mast cell leukemia cell line causing ligand-independent activation of c-kit product. J Clin Invest 1993; 92: 1736–1744.

    Article  CAS  Google Scholar 

  49. Bayle J, Letard S, Frank R, Dubreuil P, De Sepulveda P . Suppressor of cytokine signaling 6 associates with KIT and regulates KIT receptor signaling. J Biol Chem 2004; 279: 12249–12259.

    Article  CAS  Google Scholar 

  50. Shevchenko A, Wilm M, Vorm O, Mann M . Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem 1996; 68: 850–858.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Cyndie Mosca, F Bardin and K Hanssens for technical assistance. AC is a recipient of PhD fellowships from Ministère de la Recherche-ENS, ARC and a financial support from the French Society of Hematology. We acknowledge postdoctoral fellowships from FRM and Institut Lilly to MLA, from INCa and OSEO to SL and from FRM to MV. This project was supported by grants from la Ligue Contre le Cancer and INCa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P De Sepulveda.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaix, A., Arcangeli, ML., Lopez, S. et al. KIT-D816V oncogenic activity is controlled by the juxtamembrane docking site Y568-Y570. Oncogene 33, 872–881 (2014). https://doi.org/10.1038/onc.2013.12

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.12

Keywords

This article is cited by

Search

Quick links