Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The MAPK pathway functions as a redundant survival signal that reinforces the PI3K cascade in c-Kit mutant melanoma

Abstract

Stimulation of the c-Kit receptor tyrosine kinase has a critical role in the development and migration of melanocytes, and oncogenic c-Kit mutants contribute to the progression of some melanomas. c-Kit signalling activates the mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K) pathways and their relative contribution to the activities of oncogenic and ligand-dependent c-Kit remains uncertain. We show that PI3K is a major regulator of MAPK activation in response to c-Kit activity and the dominant effector of c-Kit-driven melanocyte proliferation and melanoma survival. Nevertheless, inhibition of the PI3K pathway in c-Kit mutant melanoma cells did not replicate the apoptotic efficacy of the c-Kit inhibitor, imatinib mesylate. Instead, the simultaneous suppression of the PI3K and MAPK pathways promoted a strong synergistic apoptotic effect. These data indicate that MAPK functions as a redundant survival signal that reinforces the PI3K cascade in c-Kit mutant melanoma. Thus, the concurrent inhibition of PI3K and MAPK signalling is required to suppress oncogenic c-Kit activity and may provide an effective therapeutic strategy in c-Kit mutant melanomas.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Yoshida H, Kunisada T, Grimm T, Nishimura EK, Nishioka E, Nishikawa SI . Review: melanocyte migration and survival controlled by SCF/c-kit expression. J Investig Dermatol Symp Proc 2001; 6: 1–5.

    Article  CAS  Google Scholar 

  2. Roskoski R . Signalling by Kit protein-tyrosine kinase--the stem cell factor receptor. Biochem Biophys Res Commun 2005; 337: 1–13.

    Article  CAS  Google Scholar 

  3. Heinrich MC, Blanke CD, Druker BJ, Corless CL . Inhibition of KIT tyrosine kinase activity: a novel molecular approach to the treatment of KIT-positive malignancies. J Clin Oncol 2002; 20: 1692–1703.

    Article  CAS  Google Scholar 

  4. Antonescu CR, Busam KJ, Francone TD, Wong GC, Guo T, Agaram NP et al. L576P KIT mutation in anal melanomas correlates with KIT protein expression and is sensitive to specific kinase inhibition. Int J Cancer 2007; 121: 257–264.

    Article  CAS  Google Scholar 

  5. Curtin JA, Busam K, Pinkel D, Bastian BC . Somatic activation of KIT in distinct subtypes of melanoma. J Clin Oncol 2006; 24: 4340–4346.

    Article  CAS  Google Scholar 

  6. Rivera RS, Nagatsuka H, Gunduz M, Cengiz B, Gunduz E, Siar CH et al. C-kit protein expression correlated with activating mutations in KIT gene in oral mucosal melanoma. Virchows Arch 2008; 452: 27–32.

    Article  CAS  Google Scholar 

  7. Beadling C, Jacobson-Dunlop E, Hodi FS, Le C, Warrick A, Patterson J et al. KIT gene mutations and copy number in melanoma subtypes. Clin Cancer Res 2008; 14: 6821–6828.

    Article  CAS  Google Scholar 

  8. Handolias D, Salemi R, Murray W, Tan A, Liu W, Viros A et al. Mutations in KIT occur at low frequency in melanomas arising from anatomical sites associated with chronic and intermittent sun exposure. Pigment Cell Melanoma Res 2010; 23: 210–215.

    Article  CAS  Google Scholar 

  9. Hodi FS, Friedlander P, Corless CL, Heinrich MC, Mac Rae S, Kruse A et al. Major response to imatinib mesylate in KIT-mutated melanoma. J Clin Oncol 2008; 26: 2046–2051.

    Article  CAS  Google Scholar 

  10. Lutzky J, Bauer J, Bastian BC . Dose-dependent, complete response to imatinib of a metastatic mucosal melanoma with a K642E KIT mutation. Pigment Cell Melanoma Res 2008; 21: 492–493.

    Article  Google Scholar 

  11. Carvajal RD, Antonescu CR, Wolchok JD, Chapman PB, Roman RA, Teitcher J et al. KIT as a therapeutic target in metastatic melanoma. JAMA 2011; 305: 2327–2334.

    Article  CAS  Google Scholar 

  12. Guo J, Si L, Kong Y, Flaherty KT, Xu X, Zhu Y et al. Phase II, open-label, single-arm trial of imatinib mesylate in patients with metastatic melanoma harboring c-Kit mutation or amplification. J Clin Oncol 2011; 29: 2904–2909.

    Article  CAS  Google Scholar 

  13. Gounder MM, Maki RG . Molecular basis for primary and secondary tyrosine kinase inhibitor resistance in gastrointestinal stromal tumor. Cancer Chemother Pharmacol 2011; 67 (Suppl 1): S25–S43.

    Article  Google Scholar 

  14. Alexeev V, Yoon K . Distinctive role of the c-Kit receptor tyrosine kinase signalling in mammalian melanocytes. J Invest Dermatol 2006; 126: 1102–1110.

    Article  CAS  Google Scholar 

  15. Jeon S, Kim NH, Kim JY, Lee AY . Stem cell factor induces ERM proteins phosphorylation through PI3K activation to mediate melanocyte proliferation and migration. Pigment Cell Melanoma Res 2009; 22: 77–85.

    Article  CAS  Google Scholar 

  16. Larribere L, Khaled M, Tartare-Deckert S, Busca R, Luciano F, Bille K et al. PI3K mediates protection against TRAIL-induced apoptosis in primary human melanocytes. Cell Death Differ 2004; 11: 1084–1091.

    Article  CAS  Google Scholar 

  17. Smalley KS, Contractor R, Nguyen TK, Xiao M, Edwards R, Muthusamy V et al. Identification of a novel subgroup of melanomas with KIT/cyclin-dependent kinase-4 overexpression. Cancer Res 2008; 68: 5743–5752.

    Article  CAS  Google Scholar 

  18. Lefevre G, Glotin AL, Calipel A, Mouriaux F, Tran T, Kherrouche Z et al. Roles of stem cell factor/c-Kit and effects of Glivec/STI571 in human uveal melanoma cell tumorigenesis. J Biol Chem 2004; 279: 31769–31779.

    Article  CAS  Google Scholar 

  19. Monsel G, Ortonne N, Bagot M, Bensussan A, Dumaz N . c-Kit mutants require hypoxia-inducible factor 1alpha to transform melanocytes. Oncogene 2010; 29: 227–236.

    Article  CAS  Google Scholar 

  20. Kim KB, Lewis K, Pavlick AC, Infante JR, Ribas A, Sosman JA et al(eds). A phase II study of the MEK1/MEK2 inhibitor GSK1120212 in metastatic BRAF-V600E or K mutant cutaneous melanoma patients previously treated with or without a BRAF inhibitor. International Melanoma Congress. Pigment Cell Res, Tampa, Florida, USA, 2011.

  21. Shi H, Kong X, Ribas A, Lo RS . Combinatorial treatments that overcome PDGFRbeta-driven resistance of melanoma cells to V600EB-RAF inhibition. Cancer Res 2011; 71: 5067–5074.

    Article  CAS  Google Scholar 

  22. Villanueva J, Vultur A, Lee JT, Somasundaram R, Fukunaga-Kalabis M, Cipolla AK et al. Acquired resistance to BRAF inhibitors mediated by a RAF kinase switch in melanoma can be overcome by cotargeting MEK and IGF-1R/PI3K. Cancer Cell 2010; 18: 683–695.

    Article  CAS  Google Scholar 

  23. Kontogianni-Katsarou K, Dimitriadis E, Lariou C, Kairi-Vassilatou E, Pandis N, Kondi-Paphiti A . KIT exon 11 codon 557/558 deletion/insertion mutations define a subset of gastrointestinal stromal tumors with malignant potential. World J Gastroenterol 2008; 14: 1891–1897.

    Article  CAS  Google Scholar 

  24. Martin J, Poveda A, Llombart-Bosch A, Ramos R, Lopez-Guerrero JA, Garcia del Muro J et al. Deletions affecting codons 557–558 of the c-KIT gene indicate a poor prognosis in patients with completely resected gastrointestinal stromal tumors: a study by the Spanish Group for Sarcoma Research (GEIS). J Clin Oncol 2005; 23: 6190–6198.

    Article  CAS  Google Scholar 

  25. Garrido MC, Bastian BC . KIT as a therapeutic target in melanoma. J Invest Dermatol 2010; 130: 20–27.

    Article  CAS  Google Scholar 

  26. Wardelmann E, Neidt I, Bierhoff E, Speidel N, Manegold C, Fischer HP et al. c-kit mutations in gastrointestinal stromal tumors occur preferentially in the spindle rather than in the epithelioid cell variant. Mod Pathol 2002; 15: 125–136.

    Article  Google Scholar 

  27. Woodman SE, Trent JC, Stemke-Hale K, Lazar AJ, Pricl S, Pavan GM et al. Activity of dasatinib against L576P KIT mutant melanoma: molecular, cellular, and clinical correlates. Mol Cancer Ther 2009; 8: 2079–2085.

    Article  CAS  Google Scholar 

  28. Liang R, Wallace AR, Schadendorf D, Rubin BP . The phosphatidyl inositol 3-kinase pathway is central to the pathogenesis of Kit-activated melanoma. Pigment Cell Melanoma Res 2011; 24: 714–723.

    Article  CAS  Google Scholar 

  29. Larribere L, Hilmi C, Khaled M, Gaggioli C, Bille K, Auberger P et al. The cleavage of microphthalmia-associated transcription factor, MITF, by caspases plays an essential role in melanocyte and melanoma cell apoptosis. Genes Dev 2005; 19: 1980–1985.

    Article  CAS  Google Scholar 

  30. Jiang X, Zhou J, Yuen NK, Corless CL, Heinrich MC, Fletcher JA et al. Imatinib targeting of KIT-mutant oncoprotein in melanoma. Clin Cancer Res 2008; 14: 7726–7732.

    Article  CAS  Google Scholar 

  31. Omholt K, Grafstrom E, Kanter-Lewensohn L, Hansson J, Ragnarsson-Olding BK . KIT pathway alterations in mucosal melanomas of the vulva and other sites. Clin Cancer Res 2011; 17: 3933–3942.

    Article  CAS  Google Scholar 

  32. Aksamitiene E, Kiyatkin A, Kholodenko BN . Cross-talk between mitogenic Ras/MAPK and survival PI3K/Akt pathways: a fine balance. Biochem Soc Trans 2012; 40: 139–146.

    Article  CAS  Google Scholar 

  33. Bauer S, Duensing A, Demetri GD, Fletcher JA . KIT oncogenic signalling mechanisms in imatinib-resistant gastrointestinal stromal tumor: PI3-kinase/AKT is a crucial survival pathway. Oncogene 2007; 26: 7560–7568.

    Article  CAS  Google Scholar 

  34. Si L, Xu X, Kong Y, Flaherty KT, Chi Z, Cui C et al. Major response to everolimus in melanoma with acquired imatinib resistance. J Clin Oncol 2012; 30: e37–e40.

    Article  CAS  Google Scholar 

  35. Nazarian R, Shi H, Wang Q, Kong X, Koya RC, Lee H et al. Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature 2010; 468: 973–977.

    Article  CAS  Google Scholar 

  36. Atefi M, von Euw E, Attar N, Ng C, Chu C, Guo D et al. Reversing Melanoma Cross-Resistance to BRAF and MEK Inhibitors by Co-Targeting the AKT/mTOR Pathway. PLoS One 2011; 6: e28973.

    Article  CAS  Google Scholar 

  37. Gopal YN, Deng W, Woodman SE, Komurov K, Ram P, Smith PD et al. Basal and treatment-induced activation of AKT mediates resistance to cell death by AZD6244 (ARRY-142886) in Braf-mutant human cutaneous melanoma cells. Cancer Res 2010; 70: 8736–8747.

    Article  CAS  Google Scholar 

  38. Shimizu T, Tolcher AW, Papadopoulos KP, Beeram M, Rasco DW, Smith LS et al. The clinical effect of the dual-targeting strategy involving PI3K/AKT/mTOR and RAS/MEK/ERK pathways in patients with advanced cancer. Clin Cancer Res 2012; 18: 2316–2325.

    Article  CAS  Google Scholar 

  39. Takayama Y, Kokuryo T, Yokoyama Y, Nagino M, Nimura Y, Senga T et al. MEK inhibitor enhances the inhibitory effect of imatinib on pancreatic cancer cell growth. Cancer Lett 2008; 264: 241–249.

    Article  CAS  Google Scholar 

  40. Halaban R, Ghosh S, Duray P, Kirkwood JM, Lerner AB . Human melanocytes cultured from nevi and melanomas. J Invest Dermatol 1986; 87: 95–101.

    Article  CAS  Google Scholar 

  41. Chou TC, Talalay P . Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 1984; 22: 27–55.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Antoni Ribas, Peter Hersey and Meenhard Herlyn for providing c-Kit mutant melanoma cells lines. This work is supported by Programme Grant 633004 and project grants of the National Health and Medical Research Council of Australia (NHMRC) and an infrastructure grant to Westmead Millennium Institute by the Health Department of NSW through Sydney West Area Health Service. Westmead Institute for Cancer Research is the recipient of capital grant funding from the Australian Cancer Research Foundation. HR is a recipient of a Cancer Institute New South Wales, Research Fellowship and a NHMRC Senior Research Fellowship. JT is supported by an Australian Postgraduate Award and a Westmead Medical Research Foundation Top-up Award. The support of the Melanoma Foundation of the University of Sydney and colleagues from Melanoma Institute Australia and the Department of Anatomical Pathology at the Royal Prince Alfred Hospital are also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H Rizos.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Todd, J., Scurr, L., Becker, T. et al. The MAPK pathway functions as a redundant survival signal that reinforces the PI3K cascade in c-Kit mutant melanoma. Oncogene 33, 236–245 (2014). https://doi.org/10.1038/onc.2012.562

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.562

Keywords

This article is cited by

Search

Quick links