Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

NRAS mutant melanoma: biological behavior and future strategies for therapeutic management

Abstract

The recent years have seen a significant shift in the expectations for the therapeutic management of disseminated melanoma. The clinical success of BRAF targeted therapy suggests that long-term disease control may one day be a reality for genetically defined subgroups of melanoma patients. Despite this progress, few advances have been made in developing targeted therapeutic strategies for the 50% of patients whose melanomas are BRAF wild-type. The most well-characterized subgroup of BRAF wild-type tumors is the 15–20% of all melanomas that harbor activating NRAS (Neuroblastoma Rat Sarcoma Virus) mutations. Emerging preclinical and clinical evidence suggests that NRAS mutant melanomas have patterns of signal transduction and biological behavior that is distinct from BRAF mutant melanomas. This overview will discuss the unique clinical and prognostic behavior of NRAS mutant melanoma and will summarize the emerging data on how NRAS-driven signaling networks can be translated into novel therapeutic strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Atkins MB . The role of cytotoxic chemotherapeutic agents either alone or in combination with biological response modifiers (ed Kirkwood JK, Marcel Dekker, New York, 1997, p. 219.

  2. Hodi FS, O′Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 2010; 363: 711–723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Druker BJ, Talpaz M, Resta DJ, Peng B, Buchdunger E, Ford JM et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 2001; 344: 1031–1037.

    Article  CAS  PubMed  Google Scholar 

  4. Duensing S, Duensing A . Targeted therapies of gastrointestinal stromal tumors (GIST)—the next frontiers. Biochem Pharmacol 2010; 80: 575–583.

    Article  CAS  PubMed  Google Scholar 

  5. Soda M, Choi YL, Enomoto M, Takada S, Yamashita Y, Ishikawa S et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature 2007; 448: 561–566.

    Article  CAS  PubMed  Google Scholar 

  6. Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S et al. Mutations of the BRAF gene in human cancer. Nature 2002; 417: 949–954.

    Article  CAS  PubMed  Google Scholar 

  7. Flaherty KT, Puzanov I, Kim KB, Ribas A, McArthur GA, Sosman JA et al. Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med 2010; 363: 809–819.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, Larkin J et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med 2011; 364: 2507–2516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bos JL . Ras oncogenes in human cancer: a review. Cancer Res 1989; 49: 4682–4689.

    CAS  PubMed  Google Scholar 

  10. Malumbres M, Barbacid M . RAS oncogenes: the first 30 years. Nat Rev Cancer 2003; 3: 459–465.

    Article  CAS  PubMed  Google Scholar 

  11. Colicelli J . Human RAS superfamily proteins and related GTPases. Sci STKE 2004; 2004: RE13.

    Article  PubMed  PubMed Central  Google Scholar 

  12. McCormick F . Ras-related proteins in signal transduction and growth control. Mol Reprod Dev 1995; 42: 500–506.

    Article  CAS  PubMed  Google Scholar 

  13. Lowy DR, Willumsen BM . Function and regulation of ras. Annu Rev Biochem 1993; 62: 851–891.

    Article  CAS  PubMed  Google Scholar 

  14. Buday L, Downward J . Epidermal growth factor regulates p21ras through the formation of a complex of receptor, Grb2 adapter protein, and Sos nucleotide exchange factor. Cell 1993; 73: 611–620.

    Article  CAS  PubMed  Google Scholar 

  15. Downward J . Targeting RAS signalling pathways in cancer therapy. Nat Rev Cancer 2003; 3: 11–22.

    Article  CAS  PubMed  Google Scholar 

  16. Albino A, LeStrange R . Transforming ras genes from human melanoma: a manifestation of tumor heterogeneity? Nature 1984; 308: 69–72.

    Article  CAS  PubMed  Google Scholar 

  17. Milagre C, Dhomen N, Geyer FC, Hayward R, Lambros M, Reis-Filho JS et al. A mouse model of melanoma driven by oncogenic KRAS. Cancer Res 2010; 70: 5549–5557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Whitwam T, Vanbrocklin MW, Russo ME, Haak PT, Bilgili D, Resau JH et al. Differential oncogenic potential of activated RAS isoforms in melanocytes. Oncogene 2007; 26: 4563–4570.

    Article  CAS  PubMed  Google Scholar 

  19. Pollock PM, Harper UL, Hansen KS, Yudt LM, Stark M, Robbins CM et al. High frequency of BRAF mutations in nevi. Nat Genet 2003; 33: 19–20.

    Article  CAS  PubMed  Google Scholar 

  20. Bauer J, Curtin JA, Pinkel D, Bastian BC . Congenital melanocytic nevi frequently harbor NRAS mutations but no BRAF mutations. J Invest Dermatol 2007; 127: 179–182.

    Article  CAS  PubMed  Google Scholar 

  21. Bastian BC, LeBoit PE, Pinkel D . Mutations and copy number increase of HRAS in Spitz nevi with distinctive histopathological features. Am J Pathol 2000; 157: 967–972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mooi WJ, Peeper DS . Oncogene-induced cell senescence—halting on the road to cancer. N Engl J Med 2006; 355: 1037–1046.

    Article  CAS  PubMed  Google Scholar 

  23. Michaloglou C, Vredeveld LC, Soengas MS, Denoyelle C, Kuilman T, van der Horst CM et al. BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 2005; 436: 720–724.

    Article  CAS  PubMed  Google Scholar 

  24. Bardeesy N, Bastian BC, Hezel A, Pinkel D, DePinho RA, Chin L . Dual inactivation of RB and p53 pathways in RAS-induced melanomas. Mol Cell Biol 2001; 21: 2144–2153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chin L, Pomerantz J, Polsky D, Jacobson M, Cohen C, Cordon-Cardo C et al. Cooperative effects of INK4a and ras in melanoma susceptibility in vivo. Genes Dev 1997; 11: 2822–2834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jonsson A, Tuominen R, Grafstrom E, Hansson J, Egyhazi S . High frequency of p16 (INK4A) promoter methylation in NRAS-mutated cutaneous melanoma. J Invest Dermatol 2010; 130: 2809–2817.

    Article  CAS  PubMed  Google Scholar 

  27. Shakhova O, Zingg D, Schaefer SM, Hari L, Civenni G, Blunschi J et al. Sox10 promotes the formation and maintenance of giant congenital naevi and melanoma. Nat Cell Biol 2012; 14: 882–890.

    Article  CAS  PubMed  Google Scholar 

  28. Eskandarpour M, Huang F, Reeves KA, Clark E, Hansson J . Oncogenic NRAS has multiple effects on the malignant phenotype of human melanoma cells cultured in vitro. Int J Cancer 2009; 124: 16–26.

    Article  CAS  PubMed  Google Scholar 

  29. Wan PT, Garnett MJ, Roe SM, Lee S, Niculescu-Duvaz D, Good VM et al. Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell 2004; 116: 855–867.

    Article  CAS  PubMed  Google Scholar 

  30. Lin WM, Baker AC, Beroukhim R, Winckler W, Feng W, Marmion JM et al. Modeling genomic diversity and tumor dependency in malignant melanoma. Cancer Res 2008; 68: 664–673.

    Article  CAS  PubMed  Google Scholar 

  31. Smalley KS, Xiao M, Villanueva J, Nguyen TK, Flaherty KT, Letrero R et al. CRAF inhibition induces apoptosis in melanoma cells with non-V600E BRAF mutations. Oncogene 2009; 28: 85–94.

    Article  CAS  PubMed  Google Scholar 

  32. Viros A, Fridlyand J, Bauer J, Lasithiotakis K, Garbe C, Pinkel D et al. Improving melanoma classification by integrating genetic and morphologic features. PLoS Med 2008; 5: e120.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Curtin JA, Fridlyand J, Kageshita T, Patel HN, Busam KJ, Kutzner H et al. Distinct sets of genetic alterations in melanoma. N Engl J Med 2005; 353: 2135–2147.

    Article  CAS  PubMed  Google Scholar 

  34. Devitt B, Liu W, Salemi R, Wolfe R, Kelly J, Tzen CY et al. Clinical outcome and pathological features associated with NRAS mutation in cutaneous melanoma. Pigm Cell Melanoma R 2011; 24: 666–672.

    Article  CAS  Google Scholar 

  35. Jakob JA, Bassett RL, Ng CS, Curry JL, Joseph RW, Alvarado GC et al. NRAS mutation status is an independent prognostic factor in metastatic melanoma. Cancer 2012; 118: 4014–4023.

    Article  CAS  PubMed  Google Scholar 

  36. Ellerhorst JA, Greene VR, Ekmekcioglu S, Warneke CL, Johnson MM, Cooke CP et al. Clinical correlates of NRAS and BRAF mutations in primary human melanoma. Clin Cancer Res 2011; 17: 229–235.

    Article  CAS  PubMed  Google Scholar 

  37. Wu M, Hemesath TJ, Takemoto CM, Horstmann MA, Wells AG, Price ER et al. c-Kit triggers dual phosphorylations, which couple activation and degradation of the essential melanocyte factor Mi. Genes Dev 2000; 14: 301–312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dumaz N, Hayward R, Martin J, Ogilvie L, Hedley D, Curtin JA et al. In melanoma, RAS mutations are accompanied by switching signaling from BRAF to CRAF and disrupted cyclic AMP signaling. Cancer Res 2006; 66: 9483–9491.

    Article  CAS  PubMed  Google Scholar 

  39. Marquette A, Andre J, Bagot M, Bensussan A, Dumaz N . ERK and PDE4 cooperate to induce RAF isoform switching in melanoma. Nat Struct Mol Biol 2011; 18: 584–591.

    Article  CAS  PubMed  Google Scholar 

  40. Dumaz N, Light Y, Marais R . Cyclic AMP blocks cell growth through Raf-1-dependent and Raf-1-independent mechanisms. Mol Cell Biol 2002; 22: 3717–3728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dumaz N . Mechanism of RAF isoform switching induced by oncogenic RAS in melanoma. Small GTPases 2011; 2: 289–292.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Ritt DA, Monson DM, Specht SI, Morrison DK . Impact of feedback phosphorylation and Raf heterodimerization on normal and mutant B-Raf signaling. Mol Cell Biol 2010; 30: 806–819.

    Article  CAS  PubMed  Google Scholar 

  43. Smalley KSM . A pivotal role for ERK in the oncogenic behaviour of malignant melanoma? Int J Cancer 2003; 104: 527–532.

    Article  CAS  PubMed  Google Scholar 

  44. Haass NK, Sproesser K, Nguyen TK, Contractor R, Medina CA, Nathanson KL et al. The mitogen-activated protein/extracellular signal-regulated kinase kinase inhibitor AZD6244 (ARRY-142886) induces growth arrest in melanoma cells and tumor regression when combined with docetaxel. Clin Cancer Res 2008; 14: 230–239.

    Article  CAS  PubMed  Google Scholar 

  45. Bhatt KV, Spofford LS, Aram G, McMullen M, Pumiglia K, Aplin AE . Adhesion control of cyclin D1 and p27Kip1 levels is deregulated in melanoma cells through BRAF-MEK-ERK signaling. Oncogene 2005; 24: 3459–3471.

    Article  CAS  PubMed  Google Scholar 

  46. Shao Y, Aplin AE . Akt3-mediated resistance to apoptosis in B-RAF-targeted melanoma cells. Cancer Res 2010; 70: 6670–6681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Boisvert-Adamo K, Aplin AE . Mutant B-RAF mediates resistance to anoikis via Bad and Bim. Oncogene 2008; 27: 3301–3312.

    Article  CAS  PubMed  Google Scholar 

  48. Dankort D, Curley DP, Cartlidge RA, Nelson B, Karnezis AN, Damsky WE et al. Braf(V600E) cooperates with Pten loss to induce metastatic melanoma. Nat Genet 2009; 41: 544–552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Cheung M, Sharma A, Madhunapantula SV, Robertson GP . Akt3 and mutant V600E B-Raf cooperate to promote early melanoma development. Cancer Res 2008; 68: 3429–3439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sunters A, Fernandez de Mattos S, Stahl M, Brosens JJ, Zoumpoulidou G, Saunders CA et al. FoxO3a transcriptional regulation of Bim controls apoptosis in paclitaxel-treated breast cancer cell lines. J Biol Chem 2003; 278: 49795–49805.

    Article  CAS  PubMed  Google Scholar 

  51. Madhunapantula SV, Robertson GP . The PTEN-AKT3 signaling cascade as a therapeutic target in melanoma. Pigment Cell Melanoma Res 2009; 22: 400–419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Paraiso KH, Xiang Y, Rebecca VW, Abel EV, Chen YA, Munko AC et al. PTEN loss confers BRAF inhibitor resistance to melanoma cells through the suppression of BIM expression. Cancer Res 2011; 71: 2750–2760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Diehl JA, Cheng M, Roussel MF, Sherr CJ . Glycogen synthase kinase-3beta regulates cyclin D1 proteolysis and subcellular localization. Genes Dev 1998; 12: 3499–3511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Frame S, Cohen P . GSK3 takes centre stage more than 20 years after its discovery. Biochem J 2001; 359 (Part 1): 1–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Tsao H, Goel V, Wu H, Yang G, Haluska FG . Genetic interaction between NRAS and BRAF mutations and PTEN/MMAC1 inactivation in melanoma. J Invest Dermatol 2004; 122: 337–341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Davies MA, Stemke-Hale K, Lin E, Tellez C, Deng W, Gopal YN et al. Integrated molecular and clinical analysis of AKT activation in metastatic melanoma. Clin Cancer Res 2009; 15: 7538–7546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Davies MA, Stemke-Hale K, Tellez C, Calderone TL, Deng W, Prieto VG et al. A novel AKT3 mutation in melanoma tumours and cell lines. Br J Cancer 2008; 99: 1265–1268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. De Ruiter ND, Burgering BM, Bos JL . Regulation of the Forkhead transcription factor AFX by Ral-dependent phosphorylation of threonines 447 and 451. Mol Cell Biol 2001; 21: 8225–8235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Omholt K, Hansson J . No evidence of RALGDS mutations in cutaneous melanoma. Melanoma Res (Research Support, Non-US Gov’t) 2007; 17: 410–412.

    Google Scholar 

  60. Zipfel PA, Brady DC, Kashatus DF, Ancrile BD, Tyler DS, Counter CM . Ral activation promotes melanomagenesis. Oncogene 2010; 29: 4859–4864.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Mishra PJ, Ha L, Rieker J, Sviderskaya EV, Bennett DC, Oberst MD et al. Dissection of RAS downstream pathways in melanomagenesis: a role for Ral in transformation. Oncogene 2010; 29: 2449–2456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kissil JL, Walmsley MJ, Hanlon L, Haigis KM, Bender Kim CF, Sweet-Cordero A et al. Requirement for Rac1 in a K-ras induced lung cancer in the mouse. Cancer Res 2007; 67: 8089–8094.

    Article  CAS  PubMed  Google Scholar 

  63. Qiu RG, Chen J, Kirn D, McCormick F, Symons M . An essential role for Rac in Ras transformation. Nature 1995; 374: 457–459.

    Article  CAS  PubMed  Google Scholar 

  64. Li A, Ma Y, Jin M, Mason S, Mort RL, Blyth K et al. Activated mutant NRas(Q61K) drives aberrant melanocyte signaling, survival, and invasiveness via a Rac1-dependent mechanism. J Invest Dermatol 2012; 132: 2610–2621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Konstantinopoulos PA, Karamouzis MV, Papavassiliou AG . Post-translational modifications and regulation of the RAS superfamily of GTPases as anticancer targets. Nat Rev Drug Discov 2007; 6: 541–555.

    Article  CAS  PubMed  Google Scholar 

  66. Smalley KSM, Eisen TG . Farnesyl transferase inhibitor SCH66336 is cytostatic, pro-apoptotic and enhances chemosensitivity to cisplatin in melanoma cells. Int J Cancer 2003; 105: 165–175.

    Article  CAS  PubMed  Google Scholar 

  67. Niessner H, Beck D, Sinnberg T, Lasithiotakis K, Maczey E, Gogel J et al. The farnesyl transferase inhibitor lonafarnib inhibits mTOR signaling and enforces sorafenib-induced apoptosis in melanoma cells. J Invest Dermatol 2011; 131: 468–479.

    Article  CAS  PubMed  Google Scholar 

  68. Davis ME, Zuckerman JE, Choi CH, Seligson D, Tolcher A, Alabi CA et al. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 2010; 464: 1067–1070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Solit DB, Garraway LA, Pratilas CA, Sawai A, Getz G, Basso A et al. BRAF mutation predicts sensitivity to MEK inhibition. Nature 2006; 439: 358–362.

    Article  CAS  PubMed  Google Scholar 

  70. Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 2012; 483: 603–607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Adjei AA, Cohen RB, Franklin W, Morris C, Wilson D, Molina JR et al. Phase I pharmacokinetic and pharmacodynamic study of the oral, small-molecule mitogen-activated protein kinase kinase 1/2 inhibitor AZD6244 (ARRY-142886) in patients with advanced cancers. J Clin Oncol 2008; 26: 2139–2146.

    Article  CAS  PubMed  Google Scholar 

  72. Flaherty KT, Robert C, Hersey P, Nathan P, Garbe C, Milhem M et al. Improved survival with MEK inhibition in BRAF-mutated melanoma. N Engl J Med 2012; 367: 107–114.

    Article  CAS  PubMed  Google Scholar 

  73. Gilmartin AG, Bleam MR, Groy A, Moss KG, Minthorn EA, Kulkarni SG et al. GSK1120212 (JTP-74057) is an inhibitor of MEK activity and activation with favorable pharmacokinetic properties for sustained in vivo pathway inhibition. Clin Cancer Res 2011; 17: 989–1000.

    Article  CAS  PubMed  Google Scholar 

  74. Robert C, Flaherty KT, Hersey P, Nathan PD, Garbe C, Milhem MM et al. METRIC phase III study: efficacy of trametinib (T), a potent and selective MEK inhibitor (MEKi), in progression-free survival (PFS) and overall survival (OS), compared with chemotherapy (C) in patients (pts) with BRAFV600E/K mutant advanced or metastatic melanoma (MM). J Clin Oncol 2012; 30 (Suppl): LBA8509.

    Google Scholar 

  75. Ascierto PA, Berking C, Agarwala SS, Schadendorf D, Van Herpen C, Queirolo P et al. Efficacy and safety of oral MEK162 in patients with locally advanced and unresectable or metastatic cutaneous melanoma harboring BRAFV600 or NRAS mutations. J Clin Oncol 2012; 30 (Suppl): 8511.

    Article  Google Scholar 

  76. Smalley KS, Aplin AE, Flaherty KT, Hoeller C, Bosserhoff AK, Haass NK et al. Meeting Report from the 2011 International Melanoma Congress, Tampa, Florida. Pigm Cell Melanoma Res 2012; 25: E1–E11.

    Article  Google Scholar 

  77. Fedorenko IV, Paraiso KH, Smalley KS . Acquired and intrinsic BRAF inhibitor resistance in BRAF V600E mutant melanoma. Biochem Pharmacol 2011; 82: 201–209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Paraiso KH, Haarberg HE, Wood E, Rebecca VW, Chen YA, Xiang Y et al. The HSP90 inhibitor XL888 overcomes BRAF inhibitor resistance mediated through diverse mechanisms. Clin Can Res 2012; 18: 2502–2514.

    Article  CAS  Google Scholar 

  79. Greger JG, Eastman SD, Zhang V, Bleam MR, Hughes AM, Smitheman KN et al. Combinations of BRAF, MEK, and PI3K/mTOR inhibitors overcome acquired resistance to the BRAF inhibitor GSK2118436 dabrafenib, mediated by NRAS or MEK mutations. Mol Cancer Ther 2012; 11: 909–920.

    Article  CAS  PubMed  Google Scholar 

  80. Atefi M, von Euw E, Attar N, Ng C, Chu C, Guo D et al. Reversing melanoma cross-resistance to BRAF and MEK inhibitors by co-targeting the AKT/mTOR pathway. PLoS One 2011; 6: e28973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Engelman JA, Chen L, Tan X, Crosby K, Guimaraes AR, Upadhyay R et al. Effective use of PI3K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047R murine lung cancers. Nat Med 2008; 14: 1351–1356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. She QB, Solit DB, Ye Q, O’Reilly KE, Lobo J, Rosen N . The BAD protein integrates survival signaling by EGFR/MAPK and PI3K/Akt kinase pathways in PTEN-deficient tumor cells. Cancer Cell 2005; 8: 287–297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. She QB, Halilovic E, Ye Q, Zhen W, Shirasawa S, Sasazuki T et al. 4E-BP1 is a key effector of the oncogenic activation of the AKT and ERK signaling pathways that integrates their function in tumors. Cancer Cell 2010; 18: 39–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Jaiswal BS, Janakiraman V, Kljavin NM, Eastham-Anderson J, Cupp JE, Liang Y et al. Combined targeting of BRAF and CRAF or BRAF and PI3K effector pathways is required for efficacy in NRAS mutant tumors. PLoS One 2009; 4: e5717.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Bedard P, Tabernero J, Kurzrock R, Britten CD, Stathis A, Perez-Garcia JM et al. A phase lb, open-label, multicenter, dose-escalation study of the oral pan-PI3K inhibitor BKM120 in combination with the oral MEK1/2 inhibitor GSK1120212 in patients (pts) with selected advanced solid tumors. J Clin Oncol 2012; 30 (Suppl): 3003.

    Article  Google Scholar 

  86. Chandarlapaty S . Negative feedback and adaptive resistance to the targeted therapy of cancer. Cancer Discov 2012; 2: 311–319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Duncan JS, Whittle MC, Nakamura K, Abell AN, Midland AA, Zawistowski JS et al. Dynamic reprogramming of the kinome in response to targeted MEK inhibition in triple-negative breast cancer. Cell 2012; 149: 307–321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ebi H, Corcoran RB, Singh A, Chen Z, Song Y, Lifshits E et al. Receptor tyrosine kinases exert dominant control over PI3K signaling in human KRAS mutant colorectal cancers. J Clin Invest 2011; 121: 4311–4321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Molhoek KR, Shada AL, Smolkin M, Chowbina S, Papin J, Brautigan DL et al. Comprehensive analysis of receptor tyrosine kinase activation in human melanomas reveals autocrine signaling through IGF-1R. Melanoma Res 2011; 21: 274–284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Gopal YN, Deng W, Woodman SE, Komurov K, Ram P, Smith PD et al. Basal and treatment-induced activation of AKT mediates resistance to cell death by AZD6244 (ARRY-142886) in Braf-mutant human cutaneous melanoma cells. Cancer Res 2010; 70: 8736–8747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Tworkoski K, Singhal G, Szpakowski S, Zito CI, Bacchiocchi A, Muthusamy V et al. Phosphoproteomic screen identifies potential therapeutic targets in melanoma. Mol Cancer Res 2011; 9: 801–812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Sensi M, Catani M, Castellano G, Nicolini G, Alciato F, Tragni G et al. Human cutaneous melanomas lacking MITF and melanocyte differentiation antigens express a functional Axl receptor kinase. J Invest Dermatol 2011; 131: 2448–2457.

    Article  CAS  PubMed  Google Scholar 

  93. Su Y, Vilgelm AE, Kelley MC, Hawkins OE, Liu Y, Boyd KL et al. RAF265 inhibits the growth of advanced human melanoma tumors. Clin Cancer Res 2012; 18: 2184–2198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Means-Powell JA, Adjei AA, Puzanov I, Dy GK, Goff LW, Ma WW et al. Safety and efficacy of MET inhibitor tivantinib (ARQ 197) combined with sorafenib in patients (pts) with NRAS wild-type or mutant melanoma from a phase I study. J Clin Oncol 2012; 30 (Suppl): 8519.

    Article  Google Scholar 

  95. Nazarian R, Shi H, Wang Q, Kong X, Koya RC, Lee H et al. Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature 2010; 468: 973–977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Su F, Bradley WD, Wang QQ, Yang H, Xu LZ, Higgins B et al. Resistance to selective BRAF inhibition can be mediated by modest upstream pathway activation. Cancer Res 2012; 72: 969–978.

    Article  CAS  PubMed  Google Scholar 

  97. Gowrishankar K, Snoyman S, Pupo GM, Becker TM, Kefford RF, Rizos H . Acquired resistance to BRAF inhibition can confer cross-resistance to combined BRAF/MEK inhibition. J Invest Dermatol 2012; 132: 1850–1859.

    Article  CAS  PubMed  Google Scholar 

  98. Diaz LA, Williams RT, Wu J, Kinde I, Hecht JR, Berlin J et al. The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature 2012; 486: 537–540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Sensi M, Nicolini G, Petti C, Bersani I, Lozupone F, Molla A et al. Mutually exclusive NRASQ61R and BRAFV600E mutations at the single-cell level in the same human melanoma. Oncogene 2006; 25: 3357–3364.

    Article  CAS  PubMed  Google Scholar 

  100. Jovanovic B, Egyhazi S, Eskandarpour M, Ghiorzo P, Palmer JM, Bianchi Scarra G et al. Coexisting NRAS and BRAF mutations in primary familial melanomas with specific CDKN2A germline alterations. J Invest Dermatol 2010; 130: 618–620.

    Article  CAS  PubMed  Google Scholar 

  101. Kaplan FM, Shao Y, Mayberry MM, Aplin AE . Hyperactivation of MEK-ERK1/2 signaling and resistance to apoptosis induced by the ongenic B-RAF inhibitor, PLX4720, in mutant N-Ras melanoma cell lines. Oncogene 2010; 30: 366–371.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  102. Halaban R, Zhang W, Bacchiocchi A, Cheng E, Parisi F, Ariyan S et al. PLX4032, a selective BRAF(V600E) kinase inhibitor, activates the ERK pathway and enhances cell migration and proliferation of BRAF melanoma cells. Pigment Cell Melanoma Res 2010; 23: 190–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Poulikakos PI, Zhang C, Bollag G, Shokat KM, Rosen N . RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF. Nature 2010; 464: 427–430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Heidorn SJ, Milagre C, Whittaker S, Nourry A, Niculescu-Duvas I, Dhomen N et al. Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor progression through CRAF. Cell 2010; 140: 209–221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Hatzivassiliou G, Song K, Yen I, Brandhuber BJ, Anderson DJ, Alvarado R et al. RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth. Nature 2010; 464: 431–435.

    Article  CAS  PubMed  Google Scholar 

  106. Cho KJ, Kasai RS, Park JH, Chigurupati S, Heidorn SJ, van der Hoeven D et al. Raf inhibitors target ras spatiotemporal dynamics. Curr Biol 2012; 22: 945–955.

    Article  CAS  PubMed  Google Scholar 

  107. Su F, Viros A, Milagre C, Trunzer K, Bollag G, Spleiss O et al. RAS mutations in cutaneous squamous-cell carcinomas in patients treated with BRAF inhibitors. N Engl J Med 2012; 366: 207–215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Oberholzer PA, Kee D, Dziunycz P, Sucker A, Kamsukom N, Jones R et al. RAS mutations are associated with the development of cutaneous squamous cell tumors in patients treated with RAF inhibitors. J Clin Oncol 2012; 30: 316–321.

    Article  CAS  PubMed  Google Scholar 

  109. Zimmer L, Hillen U, Livingstone E, Lacouture ME, Busam K, Carvajal RD et al. Atypical melanocytic proliferations and new primary melanomas in patients with advanced melanoma undergoing selective BRAF inhibition. J Clin Oncol 2012; 30: 2375–2383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Joseph RW, Sullivan RJ, Harrell R, Stemke-Hale K, Panka D, Manoukian G et al. Correlation of NRAS mutations with clinical response to high-dose IL-2 in patients with advanced melanoma. J Immunother 2012; 35: 66–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Shahabi V, Whitney G, Hamid O, Schmidt H, Chasalow SD, Alaparthy S et al. Assessment of association between BRAF-V600E mutation status in melanomas and clinical response to ipilimumab. Cancer Immunol Immunother 2012; 61: 733–737.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work in the Smalley lab is supported by Grants U54 CA143970-01 and R01 CA161107-01 from the National Institutes of Health, The Harry Lloyd Trust and the State of Florida (09BN-14).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K S M Smalley.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fedorenko, I., Gibney, G. & Smalley, K. NRAS mutant melanoma: biological behavior and future strategies for therapeutic management. Oncogene 32, 3009–3018 (2013). https://doi.org/10.1038/onc.2012.453

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.453

Keywords

This article is cited by

Search

Quick links