Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Tamoxifen regulates cell fate through mitochondrial estrogen receptor beta in breast cancer

Abstract

Tamoxifen (TAM) has both cytostatic and cytotoxic properties for breast cancer. TAM engaged mitochondrial estrogen receptor beta (ERβ) as an antagonist in MCF7-BK cells, increasing reactive oxygen species (ROS) concentrations from the mitochondria that were required for cytotoxicity. In part, this derived from TAM downregulating manganese superoxide dismutase (MnSOD) activity by causing the nitrosylation of tyrosine 34, thereby increasing ROS. ROS-activated protein kinase C delta and c-jun N-terminal kinases, resulting in the mitochondrial translocation of Bax and cytochrome C release. Interestingly, TAM failed to cause high ROS levels or induce cell death in MCF7-BK-TR cells due to stimulation of MnSOD activity through agonistic effects at mitochondrial ERβ. In several mouse xenograft models, lentiviral shRNA-induced knockdown of MnSOD caused tumors that grew in the presence of TAM to undergo substantial apoptosis. Tumor MnSOD and mitochondrial ERβ are therefore targets for therapeutic intervention to reverse TAM resistance and enhance a cell death response.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Han P, Kang JH, Li HL, Hu SX, Lian HH, Qiu PP et al. Antiproliferation and apoptosis induced by tamoxifen in human bile duct carcinoma QBC939 cells via upregulated p53 expression. Biochem Biophys Res Commun 2009; 385: 251–256.

    Article  CAS  Google Scholar 

  2. Huang CC, Cheng HH, Lin KL, Cheng JS, Tsai JY, Liao WC et al. Tamoxifen-induced [Ca2+]I rise and apoptosis in corneal epithelial cells. Toxicology 2009; 255: 58–64.

    Article  CAS  Google Scholar 

  3. Moriai R, Tsuji N, Moriai M, Kobayashi D, Watanabe N . Survivin plays as a resistant factor against taxoxifen-induced apoptosis in human breast cancer cells. Breast Cancer Res Treat 2009; 117: 261–271.

    Article  CAS  Google Scholar 

  4. Luce A, Courtin A, Levalois C, Altmeyer-Morel S, Romeo PH, Chevillard S et al. Death receptor pathways mediate targeted and non-targeted effects of ionizing radiations in breast cancer cells. Carcinogenesis 2009; 30: 432–439.

    Article  CAS  Google Scholar 

  5. Chalut KJ, Ostrander JH, Giacomelli MG, Wax A . Light scattering measurements of subcellular structure provide noninvasive early detection of chemotherapy-induced apoptosis. Cancer Res 2009; 69: 1199–1204.

    Article  CAS  Google Scholar 

  6. Early Breast Cancer Trialists' Collaborative Group. Tamoxifen for early breast cancer: an overview of the randomized trials. Lancet 1998; 351: 1451–1467.

    Article  Google Scholar 

  7. Arpino G, Weichmann L, Osborne CK, Schiff R . Cross talk between the estrogen receptor and the HER tyrosine kinase receptor family: molecular mechanism and clinical implications for endocrine therapy resistance. Endo Rev 2008; 29: 217–233.

    Article  CAS  Google Scholar 

  8. Osborne CK, Bardou V, Hopp TA, Chamnes GC, Hilsenbeck SG, Fuqua SA et al. Role of the estrogen receptor co activator AIB1 (SRC-3) and Her2/neu in tamoxifen resistance in breast cancer. J Natl Canc Inst 2003; 95: 353–361.

    Article  CAS  Google Scholar 

  9. Hurtado A, Holmes KA, Geistlinger TR, Hutcheson IR, Nicholson RI, Brown M et al. Regulation of ERBB2 by oestrogen receptor-PAX2 determines response to 22 Mitochondrial ER and tamoxifentamoxifen. Nature 2008; 456: 663–666.

    Article  CAS  Google Scholar 

  10. Pedram A, Razandi M, Wallace DC, Levin ER . Functional estrogen receptors in the mitochondria of breast cancer cells. Mol Biol Cell 2006; 17: 2125–2137.

    Article  CAS  Google Scholar 

  11. Pedram A, Razandi M, O’Mahony F, Lubahn D, Levin ER . Estrogen receptor beta inhibits cardiac fibrosis. Mol Endocrinol 2010; 24: 2152–2165.

    Article  CAS  Google Scholar 

  12. Xiao D, Powolny AA, Singh SV . Benzyl isothiocyanate targets mitochondrial respiratory chain to trigger reactive oxygen species dependent apoptosis in human breast cancer cells. J Biol Chem 2008; 283: 30151–30163.

    Article  CAS  Google Scholar 

  13. Di X, Shiu RP, Newsham IF, Gewirtz DA . Apoptosis, autophagy, accelerated senescence and reactive oxygen in the response of human breast tumor cells to adriamycin. Biochem Pharmacol 2009; 77: 1139–1150.

    Article  CAS  Google Scholar 

  14. Chua PJ, Yip GW, Bay BH . Cell cycle arrest induced by hydrogen peroxide is associated with modulation of oxidative stress related genes in breast cancer cells. Exp Biol Med 2009; 234: 1086–1094.

    Article  CAS  Google Scholar 

  15. Poyton RO, Ball KA, Castello PR . Mitochondrial generation of free radicals and hypoxic signaling. Trends Endocrinol Metab 2009; 20: 332–340.

    Article  CAS  Google Scholar 

  16. Chapman KE, Sinclair SE, Zhuang D, Hassid A, Desai L, Waters CM . Cyclic mechanical strain increases reactive oxygen species production in pulmonary epithelial cells. Am J Physiol Lung Cell Mol Physiol 2005; 289: L834–L841.

    Article  CAS  Google Scholar 

  17. James AM, Cocheme HM, Smith RA, Murphy MP . Interactions of mitochondria-targeted and untargeted ubiquinones with the mitochondrial respiratory chain and reactive oxygen species. Implications for the use of exogenous ubiquinones as therapies and experimental tools. J Biol Chem 2005; 280: 21295–21312.

    Article  CAS  Google Scholar 

  18. Pedram A, Razandi M, Levin ER . Nature of functional estrogen receptors at the plasma membrane. Mol Endocrinol 2006; 20: 1996–2009.

    Article  CAS  Google Scholar 

  19. Harrington WR, Sheng S, Barnett DH, Petz LN, Katzenellenbogen JA, Katzenellenbogen BS . Activities of estrogen receptor alpha- and beta selective ligands at diverse estrogen responsive gene sites mediating transactivation or trans-repression. Mol Cell Endocrinol 2003; 206: 13–22.

    Article  CAS  Google Scholar 

  20. Park WC, Liu H, Macgregor-Schafer J, Jordan VC . Deregulation of estrogen induced telomerase activity in tamoxifen-resistant breast cancer cells. Int J Oncol 2005; 27: 1459–1466.

    CAS  PubMed  Google Scholar 

  21. Halliwell B . Antioxidant defense mechanisms: from the beginning to the end (of the beginning). Free Radic Res 1999; 31: 261–272.

    Article  CAS  Google Scholar 

  22. Huang P, Feng L, Oldham EA, Keating MJ, Plunkett W . Superoxide dismutase as a target for the selective killing of cancer cells. Nature 2000; 407: 390–395.

    Article  CAS  Google Scholar 

  23. Lebovitz RM, Zhang H, Vogel H, Cartwright J, Dionne L, Lu N et al. Neurodegeneration, myocardial injury, and perinatal death in mitochondrial superoxide dismutase-deficient mice. Proc Natl Acad Sci USA 1996; 93: 9782–9787.

    Article  CAS  Google Scholar 

  24. MacMillan-Crow LA, Crow JP, Thompson JA . Peroxynitrite-mediated inactivation of manganese superoxide dismutase involves nitration and oxidation of critical tyrosine residues. Biochemistry 1998; 37: 1613–1622.

    Article  CAS  Google Scholar 

  25. Yamakura F, Taka H, Fujimura T, Murayama K . Inactivation of human manganese-superoxide dismutase by peroxynitrite is caused by exclusivenitration of tyrosine 34 to 3-nitrotyrosine. J Biol Chem 1998; 273: 14085–14089.

    Article  CAS  Google Scholar 

  26. Majumder PK, Mishra NC, Sun X, Bharti A, Kharbanda S, Saxena S et al. Targeting of protein kinase C delta to mitochondria in the oxidative stress response. Cell Growth Differ 2001; 12: 465–470.

    CAS  PubMed  Google Scholar 

  27. Brodie C, Blumberg PM . Regulation of cell apoptosis by protein kinase C delta. Apoptosis 2003; 8: 19–27.

    Article  CAS  Google Scholar 

  28. Mingo-Sion AM, Marietta PM, Koller E, Wolf DM, Van Den Berg CL . Inhibition of JNK reduces G2/M transit independent of p53, leading to endoreduplication, decreased proliferation, and apoptosis in breast cancer cells. Oncogene 2004; 23: 596–604.

    Article  CAS  Google Scholar 

  29. Mandlekar S, Kong AN . Mechanisms of tamoxifen-induced apoptosis. Apoptosis 2001; 6: 469–477.

    Article  CAS  Google Scholar 

  30. Gross A, Jockel J, Wei MC, Korsmeyer SJ . Enforced dimerization of BAX results in its translocation, mitochondrial dysfunction and apoptosis. EMBO J 1998; 17: 3878–3885.

    Article  CAS  Google Scholar 

  31. Dejean LM, Martinez-Caballero S, Guo L, Hughes C, Teijido O, Ducret T et al. Oligomeric Bax is a component of the putative cytochrome c release channel MAC, mitochondrial apoptosis-induced channel. Mol Biol Cell 2005; 16: 2424–2432.

    Article  CAS  Google Scholar 

  32. Jurgensmeier JM, Xie Z, Deveraux Q, Ellerby L, Bredesen D, Reed JC . Bax directly induces release of cytochrome c from isolated mitochondria. Proc Natl Acad Sci USA 1998; 95: 4997–5002.

    Article  CAS  Google Scholar 

  33. Benhar M, Engelberg D, Levitzki A . ROSstress-activated kinases and stress signaling in cancer. EMBO Rep 2002; 3: 420–425.

    Article  CAS  Google Scholar 

  34. Aslan M, Ozben T . Oxidants in receptor tyrosine kinase signal transduction pathways. Antioxid Redox Signal 2003; 5: 781–788.

    Article  CAS  Google Scholar 

  35. Felty Q, Singh KP, Roy D . Estrogen-induced G(1)/S transition of G(0)-arrested estrogen-dependent breast cancer cells is regulated by mitochondrial oxidant signaling. Oncogene 2005; 24: 4883–4893.

    Article  CAS  Google Scholar 

  36. Petros JA, Baumann AK, Ruiz-Pesini E, Amin MB, Sun CQ, Hall J et al. mtDNA mutations increase tumorigenicity in prostate cancer. Proc Natl Acad Sci USA 2005; 102: 719–724.

    Article  CAS  Google Scholar 

  37. Ishikawa K, Takenaga K, Akimoto M, Koshikawa N, Yamaguchi A, Imanisahi H et al. ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis. Science 2008; 320: 661–664.

    Article  CAS  Google Scholar 

  38. Fan P, Wang J, Santen RJ, Yue W . Long-term treatment with tamoxifen facilitates translocation of estrogen receptor alpha out of the nucleus and enhances its interaction with EGFR in MVF-7 breast cancer cells. Can Res 2007; 67: 1352–1360.

    Article  CAS  Google Scholar 

  39. Van de Vijver MJ, He YD, van’t Veer LJ, Dai H, Hart AA, Voskuil DW et al. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 2002; 347: 1999–2009.

    Article  CAS  Google Scholar 

  40. Milanesi L, Vasconsuelo A, de Boland AR, Bland R . Expression and subcellular distribution of native estrogen receptor beta in murine C2C12 cells and skeletal muscle tissue. Steroids 2009; 74: 489–497.

    Article  CAS  Google Scholar 

  41. Chen JQ, Delannoy M, Cooke C, Yager JD . Mitochondrial localization of ERalpha and ERbeta in human MCF7 cells. Am J Physiol Endocrinol Metab 2004; 286: E1011–E1022.

    Article  CAS  Google Scholar 

  42. Yang SH, Liu R, Perez EJ, Wen Y, Stevens SM, Valencia T et al. Mitochondrial localization of estrogen receptor beta. Proc Natl Acad Sci USA 2004; 101: 4130–4135.

    Article  CAS  Google Scholar 

  43. Flynn JM, Dimitrijevich SD, Younes M, Skliris G, Murphy LC, Cammarata PR . Role of wild-type estrogen receptor-beta in mitochondrial cytoprotection of cultured normal male and female human lens epithelial cells. Am J Physiol Endocrinol Metab 2008; 295: E637–E647.

    Article  CAS  Google Scholar 

  44. Hsieh YC, Yu HP, Suzuki T, Choudhry MA, Schwacha MG, Bland KI et al. Upregulation of mitochondrial respiratory complex IV by estrogen receptor beta is critical for inhibiting mitochondrial apoptotic signaling and restoring cardiac functions following trauma-hemorrhage. J Mol Cell Cardiol 2006; 41: 511–521.

    Article  CAS  Google Scholar 

  45. Fuqua SA, Cui Y . Estrogen and progesterone receptor isoforms: clinical significance in breast cancer. Breast Cancer Res Treat 2004; 87: S3–10.

    Article  CAS  Google Scholar 

  46. Speirs V . The evolving role of oestrogen receptor beta in clinical breast cancer. Breast Cancer Res 2008; 10: 111.

    Article  Google Scholar 

  47. Yamakura F, Taka H, Fujimura T, Murayama K . Inactivation of human manganese-superoxide dismutase by peroxynitrite is caused by exclusive nitration of tyrosine 34 to 3-nitrotyrosine. J Biol Chem 1998; 273: 14085–14089.

    Article  CAS  Google Scholar 

  48. Li Y, Huang TT, Carlson EJ, Melov S, Ursell PC, Olson JL et al. Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nat Genet 1995; 11: 376–381.

    Article  CAS  Google Scholar 

  49. Kim HS, Patel K, Muldoon-Jacobs K, Bisht KS, Aykin-Burns N, Pennington JD et al. SIRT3 is a mitochondria-localized tumor suppressorrequired for maintenance of mitochondrial integrity and metabolism during stress. Cancer Cell 2010; 17: 41–51.

    Article  CAS  Google Scholar 

  50. Tao R, Coleman MC, Pennington JD, Ozden O, Park SH, Jiang H et al. Sirt3-mediated deacetylation of evolutionarily conserved lysine 122regulates MnSOD activity in response to stress. Mol Cell 2010; 40: 893–903.

    Article  CAS  Google Scholar 

  51. Diehn M, Cho RW, Lobo NA, Kalisky T, Dorie MJ, Kulp AN et al. Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 2009; 458: 780–783.

    Article  CAS  Google Scholar 

  52. Barone I, Brusco L, Gu G, Selever J, Beyer A, Covington KR et al. Loss of Rho GDIα and resistance to tamoxifen via effects on estrogen receptor α. J Natl Cancer Inst 2011; 103: 538–552.

    Article  CAS  Google Scholar 

  53. Trounce I, Kim YL, Jun AS, Wallace DC . Assessment of mitochondrial oxidative phosphorylation in patient muscle biopsies, lymphoblasts, and transmitochondrial cell lines. Methods Enzymol 1996; 264: 484–509.

    Article  CAS  Google Scholar 

  54. Razandi M, Pedram A, Levin ER . Plasma membrane estrogen receptors signal to anti-apoptosis in breast cancer. Mol Endocrinol 2000; 14: 1434–1447.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by grants from the Research Service of the Department of Veteran's Affairs, and NIH CA-10036 to ERL and SPORE in Breast Cancer (#P50CA89018), Department of Defense Center of Excellence Grant (#W81XWH-06-1-0590) (VCJ) and Georgetown Lombardi Comprehensive Cancer Spore Grant (#P30CA051008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E R Levin.

Ethics declarations

Competing interests

The authors declare no conflicts of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Razandi, M., Pedram, A., Jordan, V. et al. Tamoxifen regulates cell fate through mitochondrial estrogen receptor beta in breast cancer. Oncogene 32, 3274–3285 (2013). https://doi.org/10.1038/onc.2012.335

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.335

Keywords

This article is cited by

Search

Quick links