Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

LASS2 enhances chemosensitivity of breast cancer by counteracting acidic tumor microenvironment through inhibiting activity of V-ATPase proton pump

Abstract

A main obstacle to overcome during the treatment of tumors is drug resistance to chemotherapy; emerging studies indicate that a key factor contributing to this problem is the acidic tumor microenvironment. Here, we found that LASS2 expression was significantly lower in drug-resistant Michigan Cancer Foundation-7/adriamycin (MCF-7/ADR) human breast cancer cells than the drug-sensitive MCF-7 cells, and low expression of LASS2 was associated with poor prognosis in patients with breast cancer. Our results showed that the overexpression of LASS2 in MCF-7/ADR cells increased the chemosensitivity to multiple chemotherapeutic agents, including doxorubicin (Dox), whereas LASS2 knockdown in MCF-7 cells decreased the chemosensitivity. Cell-cycle analysis revealed a corresponding increase in apoptosis in the LASS2-overexpressing cells following Dox exposure, showing that the overexpression of LASS2 increased the susceptibility to Dox cytotoxicity. This effect was mediated by a significant increase in pHe (extracellular pH) and lysosomal pH, and more Dox entered the cells and stayed in the nuclei of cells. In nude mice, the combination of LASS2 overexpression and Dox significantly inhibited the growth of xenografts. Our findings suggest that LASS2 is involved in chemotherapeutic outcomes and low LASS2 expression may predict chemoresistance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

Abbreviations

5-FU:

5-fluorouracil

ABC:

ATP-binding cassette

ADR:

adriamycin

DDP:

cisplatin

DFS:

disease-free survival

Dox:

doxorubicin

EPI:

epirubicin hydrochloride

IAP:

inhibitor of apoptosis protein

LASS2:

Homo sapiens longevity assurance homolog 2 of yeast LAG1

MDR:

multidrug resistance

MTO:

mitoxantrone dihydrochloride

OS:

overall survival

pHe:

extracellular pH

pHi:

intracellular pH

PSS:

protonation, sequestration and secretion

V-ATPase:

vacuolar-H+-ATPase

VRL:

vinorelbine bitartrate

References

  1. Siegel R, Ward E, Brawley O, Jemal A . Cancer statistics, 2011: the impact of eliminating socioeconomic and racial disparities on premature cancer deaths. CA Cancer J Clin 2011; 61: 212–236.

    Article  Google Scholar 

  2. National Comprehensive Cancer Network: NCCN Clinical Practice Guidelines in Oncology: Breast Cancer, Version 2, 2011, http://www.nccn.org/professionals/physician_gls/f_guidelines.asp. Accessed January 13, 2012.

  3. Gottesman MM, Fojo T, Bates SE . Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer 2002; 2: 48–58.

    Article  CAS  Google Scholar 

  4. Lou PJ, Lai PS, Shieh MJ, Macrobert AJ, Berg K, Bown SG . Reversal of doxorubicin resistance in breast cancer cells by photochemical internalization. Int J Cancer 2006; 119: 2692–2698.

    Article  CAS  Google Scholar 

  5. Gerweck LE, Seetharaman K . Cellular pH gradient in tumor versus normal tissue: potential exploitation for the treatment of cancer. Cancer Res 1996; 56: 1194–1198.

    CAS  PubMed  Google Scholar 

  6. Raghunand N, Martinez-Zaguilán R, Wright SH, Gillies RJ . pH and drug resistance. II. Turnover of acidic vesicles and resistance to weakly basic chemotherapeutic drugs. Biochem Pharmacol 1999; 57: 1047–1058.

    Article  CAS  Google Scholar 

  7. Generali D, Fox SB, Berruti A, Brizzi MP, Campo L, Bonardi S et al. Role of carbonic anhydrase IX expression in prediction of the efficacy and outcome of primary epirubicin/tamoxifen therapy for breast cancer. Endocr Relat Cancer 2006; 13: 921–930.

    Article  CAS  Google Scholar 

  8. You H, Jin J, Shu H, Yu B, De Milito A, Lozupone F et al. Small interfering RNA targeting the subunit ATP6L of proton pump V-ATPase overcomes chemoresistance of breast cancer cells. Cancer Lett 2009; 280: 110–119.

    Article  CAS  Google Scholar 

  9. Trédan O, Galmarini CM, Patel K, Tannock IF . Drug resistance and the solid tumor microenvironment. J Natl Cancer Inst 2007; 99: 1441–1454.

    Article  Google Scholar 

  10. Gong Y, Duvvuri M, Krise JP . Separate roles for the Golgi apparatus and lysosomes in the sequestration of drugs in the multidrug-resistant human leukemic cell line HL-60. J Biol Chem 2003; 278: 50234–50239.

    Article  CAS  Google Scholar 

  11. Mahoney BP, Raghunand N, Baggett B, Gillies RJ . Tumor acidity, ion trapping and chemotherapeutics I. Acid pH affects the distribution of chemotherapeutic agents in vitro. Biochem Pharmacol 2003; 66: 1207–1218.

    Article  CAS  Google Scholar 

  12. Luciani F, Spada M, De Milito A, Molinari A, Rivoltini L, Montinaro A et al. Effect of proton pump inhibitor pretreatment on resistance of solid tumors to cytotoxic drugs. J Natl Cancer Inst 2004; 96: 1702–1713.

    Article  CAS  Google Scholar 

  13. Gervasoni JE, Fields SZ, Krishna S, Baker MA, Rosado M, Thuraisamy K et al. Subcellular distribution of daunorubicin in P--positive and -negative drug-resistant cell lines using laser-assisted confocal microscopy. Cancer Res 1991; 51: 4955–4963.

    CAS  PubMed  Google Scholar 

  14. Coley HM, Amos WB, Twentyman PR, Workman P . Examination by laser scanning confocal fluorescence imaging microscopy of the subcellular localisation of anthracyclines in parent and multidrug resistant cell lines. Br J Cancer 1993; 67: 1316–1323.

    Article  CAS  Google Scholar 

  15. Larsen AK, Escargueil AE, Skladanowski A . Resistance mechanisms associated with altered intracellular distribution of anticancer agents. Pharmacol Ther 2000; 85: 217–229.

    Article  CAS  Google Scholar 

  16. Rojas JD, Sennoune SR, Maiti D, Bakunts K, Reuveni M, Sanka SC et al. Vacuolar-type H+-ATPases at the plasma membrane regulate pH and cell migration in microvascular endothelial cells. Am J Physiol Heart Circ Physiol 2006; 291: H1147–H1157.

    Article  CAS  Google Scholar 

  17. Cruciat CM, Ohkawara B, Acebron SP, Karaulanov E, Reinhard C, Ingelfinger D et al. Requirement of prorenin receptor and vacuolar H+-ATPase-mediated acidification for Wnt signaling. Science 2010; 327: 459–463.

    Article  CAS  Google Scholar 

  18. Ma L, Center MS . The gene encoding vacuolar H+-ATPase subunit C is overexpressed in multidrug-resistant HL60 cells. Biochem Biophys Res Commun 1992; 182: 675–681.

    Article  CAS  Google Scholar 

  19. Torigoe T, Izumi H, Ishiguchi H, Uramoto H, Murakami T, Ise T et al. Enhanced expression of the human vacuolar H+-ATPase c subunit gene (ATP6L) in response to anticancer agents. J Biol Chem 2002; 277: 36534–36543.

    Article  CAS  Google Scholar 

  20. Ouar Z, Bens M, Vignes C, Paulais M, Pringel C, Fleury J et al. Inhibitors of vacuolar H+-ATPase impair the preferential accumulation of daunomycin in lysosomes and reverse the resistance to anthracyclines in drug-resistant renal epithelial cells. Biochem J 2003; 370: 185–193.

    Article  CAS  Google Scholar 

  21. Petrangolini G, Supino R, Pratesi G, Dal Bo L, Tortoreto M, Croce AC et al. Effect of a novel vacuolar-H+-ATPase inhibitor on cell and tumor response to camptothecins. J Pharmacol Exp Ther 2006; 318: 939–946.

    Article  CAS  Google Scholar 

  22. Pan H, Qin WX, Huo KK, Wan DF, Yu Y, Xu ZG et al. Cloning, mapping, and characterization of a human homologue of the yeast longevity assurance gene LAG1. Genomics 2001; 77: 58–64.

    Article  CAS  Google Scholar 

  23. Schiffmann S, Sandner J, Birod K, Wobst I, Angioni C, Ruckhäberle E et al. Ceramide synthases and ceramide levels are increased in breast cancer tissue. Carcinogenesis 2009; 30: 745–752.

    Article  CAS  Google Scholar 

  24. Erez-Roman R, Pienik R, Futerman AH . Increased ceramide synthase 2 and 6 mRNA levels in breast cancer tissues and correlation with sphingosine kinase expression. Biochem Biophys Res Commun 2010; 391: 219–223.

    Article  CAS  Google Scholar 

  25. Dai Y, Lawrence TS, Xu L . Overcoming cancer therapy resistance by targeting inhibitors of apoptosis proteins and nuclear factor-kappa B. Am J Transl Res 2009; 1: 1–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Gyrd-Hansen M, Meier P . IAPs: from caspase inhibitors to modulators of NF-kappaB, inflammation and cancer. Nat Rev Cancer 2010; 10: 561–574.

    Article  CAS  Google Scholar 

  27. Fais S, De Milito A, You H, Qin W . Targeting vacuolar H+-ATPases as a new strategy against cancer. Cancer Res 2007; 67: 10627–10630.

    Article  CAS  Google Scholar 

  28. Raghunand N, He X, van Sluis R, Mahoney B, Baggett B, Taylor CW et al. Enhancement of chemotherapy by manipulation of tumour pH. Br J Cancer 1999; 80: 1005–1011.

    Article  CAS  Google Scholar 

  29. Hurwitz SJ, Terashima M, Mizunuma N, Slapak CA . Vesicular anthracycline accumulation in doxorubicin-selected U-937 cells: participation of lysosomes. Blood 1997; 89: 3745–3754.

    CAS  PubMed  Google Scholar 

  30. Wojtkowiak JW, Verduzco D, Schramm KJ, Gillies RJ . Drug resistance and cellular adaptation to tumor acidic pH microenvironment. Mol Pharm 2011; 8: 2032–2038.

    Article  CAS  Google Scholar 

  31. Calcagno AM, Salcido CD, Gillet JP, Wu CP, Fostel JM, Mumau MD et al. Prolonged drug selection of breast cancer cells and enrichment of cancer stem cell characteristics. J Natl Cancer Inst 2010; 102: 1637–1652.

    Article  CAS  Google Scholar 

  32. Thomsen P, Rudenko O, Berezin V, Norrild B . The HPV-16 E5 oncogene and bafilomycin A1 influence cell motility. Biochim Biophys Acta 1999; 1452: 285–295.

    Article  CAS  Google Scholar 

  33. Andreetta C, Puppin C, Minisini A, Valent F, Pegolo E, Damante G et al. Thymidine phosphorylase expression and benefit from capecitabine in patients with advanced breast cancer. Ann Oncol 2009; 20: 265–271.

    Article  CAS  Google Scholar 

  34. Thussbas C, Nahrig J, Streit S, Bange J, Kriner M, Kates R et al. FGFR4 Arg388 allele is associated with resistance to adjuvant therapy in primary breast cancer. J Clin Oncol 2006; 24: 3747–3755.

    Article  CAS  Google Scholar 

  35. Wülfing P, Tio J, Kersting C, Sonntag B, Buerger H, Wülfing C et al. Expression of endothelin-A-receptor predicts unfavourable response to neoadjuvant chemotherapy in locally advanced breast cancer. Br J Cancer 2004; 91: 434–440.

    Article  Google Scholar 

  36. Ding J, Huang S, Wu S, Zhao Y, Liang L, Yan M et al. Gain of miR-151 on chromosome 8q24.3 facilitates tumour cell migration and spreading through downregulating RhoGDIA. Nat Cell Biol 2010; 12: 390–399.

    Article  CAS  Google Scholar 

  37. Lu X, Qin W, Li J, Tan N, Pan D, Zhang H et al. The growth and metastasis of human hepatocellular carcinoma xenografts are inhibited by small interfering RNA targeting to the subunit ATP6L of proton pump. Cancer Res 2005; 65: 6843–6849.

    Article  CAS  Google Scholar 

  38. De Milito A, Iessi E, Logozzi M, Lozupone F, Spada M, Marino ML et al. Proton pump inhibitors induce apoptosis of human B-cell tumors through a caspase-independent mechanism involving reactive oxygen species. Cancer Res 2007; 67: 5408–5417.

    Article  CAS  Google Scholar 

  39. Jiffar T, Yilmaz T, Lee J, Hanna E, El-Naggar A, Yu D et al. KiSS1 mediates platinum sensitivity and metastasis suppression in head and neck squamous cell carcinoma. Oncogene 2011; 30: 3163–3173.

    Article  CAS  Google Scholar 

  40. Furu M, Kajita Y, Nagayama S, Ishibe T, Shima Y, Nishijo K et al. Identification of AFAP1L1 as a prognostic marker for spindle cell sarcomas. Oncogene 2011; 30: 4015–4025.

    Article  CAS  Google Scholar 

  41. Yanagisawa M, Anastasiadis PZ . p120 catenin is essential for mesenchymal cadherin-mediated regulation of cell motility and invasiveness. J Cell Biol 2006; 174: 1087–1096.

    Article  CAS  Google Scholar 

  42. Kawasaki K, Watanabe M, Sakaguchi M, Ogasawara Y, Ochiai K, Nasu Y et al. REIC/Dkk-3 overexpression downregulates P-glycoprotein in multidrug-resistant MCF7/ADR cells and induces apoptosis in breast cancer. Cancer Gene Ther 2009; 16: 65–72.

    Article  CAS  Google Scholar 

  43. Ben-Batalla I, Seoane S, Garcia-Caballero T, Gallego R, Macia M, Gonzalez LO et al. Deregulation of the Pit-1 transcription factor in human breast cancer cells promotes tumor growth and metastasis. J Clin Invest 2010; 120: 4289–4302.

    Article  CAS  Google Scholar 

  44. Zhao Y, Wang X, Wang T, Hu X, Hui X, Yan M et al. Acetylcholinesterase, a key prognostic predictor for hepatocellular carcinoma, suppresses cell growth and induces chemosensitization. Hepatology 2011; 53: 493–503.

    Article  CAS  Google Scholar 

  45. Ottewell PD, Mönkkönen H, Jones M, Lefley DV, Coleman RE, Holen I . Antitumor effects of doxorubicin followed by zoledronic acid in a mouse model of breast cancer. J Natl Cancer Inst 2008; 100: 1167–1178.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Shenglin Huang, Jun Li and Jie Chen for the kind suggestions and technical assistance. This work was supported by grants from the National Key Basic Research Program of China (2009CB521803), National Key Sci-Tech Special Project of China (2012ZX10002011-004) and National Natural Science Foundation of China (30973492 and 81030038).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W Qin.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, S., Niu, Y., Tan, N. et al. LASS2 enhances chemosensitivity of breast cancer by counteracting acidic tumor microenvironment through inhibiting activity of V-ATPase proton pump. Oncogene 32, 1682–1690 (2013). https://doi.org/10.1038/onc.2012.183

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.183

Keywords

This article is cited by

Search

Quick links