Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

Two novel BRM insertion promoter sequence variants are associated with loss of BRM expression and lung cancer risk

Abstract

SWI/SNF (SWItch/sucrose non-fermentable) complexes are ATP-dependent chromatin remodeling enzymes critically involved in the regulation of multiple functions, including gene expression, differentiation, development, DNA repair, cell adhesion and cell cycle control. BRM, a key SWI/SNF complex subunit, is silenced in 15–20% of many solid tumors. As BRM-deficient mice develop 10-fold more tumors when exposed to carcinogens, BRM is a strong candidate for a cancer susceptibility gene. In this paper, we show that BRM is regulated by transcription, thus demonstrating that the promoter region is important for BRM expression. We sequenced the BRM promoter region, finding two novel promoter indel polymorphisms, BRM741 and BRM1321, that are in linkage disequilibrium (D0.83). The variant insertion alleles of both polymorphisms produce sequence variants that are highly homologous to myocyte enhancer factor-2 (MEF2) transcription factor-binding sites; MEF2 is known to recruit histone deacetylases that silence BRM expression. Each polymorphic BRM insertion variant is found in 20% of Caucasians, and each correlates strongly with the loss of protein expression of BRM, both in cancer cell lines (P=0.009) and in primary human lung tumor specimens (P=0.015). With such strong functional evidence, we conducted a case–control study of 1199 smokers. We found an increased risk of lung cancer when both BRM homozygous promoter insertion variants were present: adjusted odds ratio of 2.19 (95% confidence interval, 1.40–3.43). Thus, we here demonstrate a strong functional association between these polymorphisms and loss of BRM expression. These polymorphisms thus have the potential to identify a sub-population of smokers at greater lung cancer risk, wherein this risk could be driven by an aberrant SWI/SNF chromatin-remodeling pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  • An HX, Claas A, Savelyeva L, Seitz S, Schlag P, Scherneck S et al. (1999). Two regions of deletion in 9p23–24 in sporadic breast cancer. Cancer Res 59: 3941–3943.

    CAS  PubMed  Google Scholar 

  • Bailey-Wilson JE, Amos CI, Pinney SM, Petersen GM, de Andrade M, Wiest JS et al. (2004). A major lung cancer susceptibility locus maps to chromosome 6q23-25. Am J Hum Genet 75: 460–474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartlett C, Stammler T, Rosson GS, Weissman BE . (2010). BRG1 mutations found in human cancer cell lines inactivate Rb-mediated cell cycle arrest. J Cell Physiol (e-pub ahead of print).

  • Bochar DA, Wang L, Beniya H, Kinev A, Xue Y, Lane WS et al. (2000). BRCA1 is associated with a human SWI/SNF-related complex: linking chromatin remodeling to breast cancer. Cell 102: 257–265.

    Article  CAS  PubMed  Google Scholar 

  • Bourachot B, Yaniv M, Muchardt C . (2003). Growth inhibition by the mammalian SWI-SNF subunit Brm is regulated by acetylation. EMBO J 22: 6505–6515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen PY, Meister G . (2005). MicroRNA-guided posttranscriptional gene regulation. Biol Chem 386: 1205–1218.

    Article  CAS  PubMed  Google Scholar 

  • DeCristofaro MF, Betz BL, Rorie CJ, Reisman DN, Wang W, Weissman BE . (2001). Characterization of SWI/SNF protein expression in human breast cancer cell lines and other malignancies. J Cell Physiol 186: 136–145.

    Article  CAS  PubMed  Google Scholar 

  • Dunaief JL, Strober BE, Guha S, Khavari PA, Alin K, Luban J et al. (1994). The retinoblastoma protein and BRG1 form a complex and cooperate to induce cell cycle arrest. Cell 79: 119–130.

    Article  CAS  PubMed  Google Scholar 

  • Fickett JW . (1996). Quantitative discrimination of MEF2 sites. Mol Cell Biol 16: 437–441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukuoka J, Fujii T, Shih JH, Dracheva T, Meerzaman D, Player A et al. (2004). Chromatin remodeling factors and BRM/BRG1 expression as prognostic indicators in non-small cell lung cancer. Clin Cancer Res 10: 4314–4324.

    Article  CAS  PubMed  Google Scholar 

  • Gaillard H, Fitzgerald DJ, Smith CL, Peterson CL, Richmond TJ, Thoma F . (2003). Chromatin remodeling activities act on UV-damaged nucleosomes and modulate DNA damage accessibility to photolyase. J Biol Chem 278: 17655–17663.

    Article  CAS  PubMed  Google Scholar 

  • Gazdar AF, Boffetta P . (2010). A risky business--identifying susceptibility loci for lung cancer. J Natl Cancer Inst 102: 920–923.

    Article  PubMed  Google Scholar 

  • Girard L, Zochbauer-Muller S, Virmani AK, Gazdar AF, Minna JD . (2000). Genome-wide allelotyping of lung cancer identifies new regions of allelic loss, differences between small cell lung cancer and non-small cell lung cancer, and loci clustering. Cancer Res 60: 4894–4906.

    CAS  PubMed  Google Scholar 

  • Glaros S, Cirrincione GM, Muchardt C, Kleer CG, Michael CW, Reisman D . (2007). The reversible epigenetic silencing of BRM: implications for clinical targeted therapy. Oncogene 26: 7058–7066.

    Article  CAS  PubMed  Google Scholar 

  • Gramling S, Rogers C, Liu G, Reisman D . (2011). Pharmacologic reversal of epigenetic silencing of the anticancer protein, BRM, a novel targeted treatment strategy. Oncogene 30: 3289–3294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gramling S, Reisman D . (2011). Discovery of BRM targeted therapies: novel reactivation of an anticancer gene. Lett Drug Design Dis 8: 93–99.

    Article  CAS  Google Scholar 

  • Gregoire S, Xiao L, Nie J, Zhang X, Xu M, Li J et al. (2007). Histone deacetylase 3 interacts with and deacetylates myocyte enhancer factor 2. Mol Cell Biol 27: 1280–1295.

    Article  CAS  PubMed  Google Scholar 

  • Gunduz E, Gunduz M, Ali MA, Beder L, Tamamura R, Katase N et al. (2009). Loss of heterozygosity at the 9p21-24 region and identification of BRM as a candidate tumor suppressor gene in head and neck squamous cell carcinoma. Cancer Invest 27: 661–668.

    Article  CAS  PubMed  Google Scholar 

  • Hill DA, de la Serna IL, Veal TM, Imbalzano AN . (2004). BRCA1 interacts with dominant negative SWI/SNF enzymes without affecting homologous recombination or radiation-induced gene activation of p21 or Mdm2. J Cell Biochem 91: 987–998.

    Article  CAS  PubMed  Google Scholar 

  • Hung RJ, McKay JD, Gaborieau V, Boffetta P, Hashibe M, Zaridze D et al. (2008). A susceptibility locus for lung cancer maps to nicotinic acetylcholine receptor subunit genes on 15q25. Nature 452: 633–637.

    Article  CAS  PubMed  Google Scholar 

  • John T, Liu G, Tsao MS . (2009). Overview of molecular testing in non-small-cell lung cancer: mutational analysis, gene copy number, protein expression and other biomarkers of EGFR for the prediction of response to tyrosine kinase inhibitors. Oncogene 28 (Suppl 1): S14–S23.

    Article  CAS  PubMed  Google Scholar 

  • Klochendler-Yeivin A, Muchardt C, Yaniv M . (2002). SWI/SNF chromatin remodeling and cancer. Curr Opin Genet Dev 12: 73–79.

    Article  CAS  PubMed  Google Scholar 

  • Landi MT, Chatterjee N, Yu K, Goldin LR, Goldstein AM, Rotunno M et al. (2009). A genome-wide association study of lung cancer identifies a region of chromosome 5p15 associated with risk for adenocarcinoma. Am J Hum Genet 85: 679–691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Landi MT, Consonni D, Rotunno M, Bergen AW, Goldstein AM, Lubin JH et al. (2008). Environment and genetics in lung cancer etiology (EAGLE) study: an integrative population-based case-control study of lung cancer. BMC Public Health 8: 203.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu G, Zhou W, Christiani DC . (2005). Molecular epidemiology of non-small cell lung cancer. Semin Respir Crit Care Med 26: 265–272.

    Article  CAS  PubMed  Google Scholar 

  • Morrison AJ, Shen X . (2006). Chromatin modifications in DNA repair. Results Probl Cell Differ 41: 109–125.

    Article  CAS  PubMed  Google Scholar 

  • Muchardt C, Bourachot B, Reyes JC, Yaniv M . (1998). ras transformation is associated with decreased expression of the brm/SNF2alpha ATPase from the mammalian SWI-SNF complex. EMBO J 17: 223–231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muchardt C, Yaniv M . (2001). When the SWI/SNF complex remodels the cell cycle. Oncogene 20: 3067–3075.

    Article  CAS  PubMed  Google Scholar 

  • Naidu SR, Love IM, Imbalzano AN, Grossman SR, Androphy EJ . (2009). The SWI/SNF chromatin remodeling subunit BRG1 is a critical regulator of p53 necessary for proliferation of malignant cells. Oncogene 28: 2492–2501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oh J, Sohn DH, Ko M, Chung H, Jeon SH, Seong RH . (2008). BAF60a interacts with p53 to recruit the SWI/SNF complex. J Biol Chem 283: 11924–11934.

    Article  CAS  PubMed  Google Scholar 

  • Otsuki T, Furukawa Y, Ikeda K, Endo H, Yamashita T, Shinohara A et al. (2001). Fanconi anemia protein, FANCA, associates with BRG1, a component of the human SWI/SNF complex. Hum Mol Genet 10: 2651–2660.

    Article  CAS  PubMed  Google Scholar 

  • Park JH, Park EJ, Hur SK, Kim S, Kwon J . (2009). Mammalian SWI/SNF chromatin remodeling complexes are required to prevent apoptosis after DNA damage. DNA Repair (Amst) 8: 29–39.

    Article  CAS  Google Scholar 

  • Park JH, Park EJ, Lee HS, Kim SJ, Hur SK, Imbalzano AN et al. (2006). Mammalian SWI/SNF complexes facilitate DNA double-strand break repair by promoting gamma-H2AX induction. EMBO J 25: 3986–3997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patrone G, Puppo F, Cusano R, Scaranari M, Ceccherini I, Puliti A et al. (2000). Nuclear run-on assay using biotin labeling, magnetic bead capture and analysis by fluorescence-based RT-PCR. Biotechniques 29: 1012–1014.

    Article  CAS  PubMed  Google Scholar 

  • Reisman D, Glaros S, Thompson EA . (2009). The SWI/SNF complex and cancer. Oncogene 28: 1653–1668.

    Article  CAS  PubMed  Google Scholar 

  • Reisman DN, Sciarrotta J, Bouldin TW, Weissman BE, Funkhouser WK . (2005). The expression of the SWI/SNF ATPase subunits BRG1 and BRM in normal human tissues. Appl Immunohistochem Mol Morphol 13: 66–74.

    Article  CAS  PubMed  Google Scholar 

  • Reisman DN, Sciarrotta J, Wang W, Funkhouser WK, Weissman BE . (2003). Loss of BRG1/BRM in human lung cancer cell lines and primary lung cancers: correlation with poor prognosis. Cancer Res 63: 560–566.

    CAS  PubMed  Google Scholar 

  • Reisman DN, Strobeck MW, Betz BL, Sciariotta J, Funkhouser Jr W, Murchardt C et al. (2002). Concomitant down-regulation of BRM and BRG1 in human tumor cell lines: differential effects on RB-mediated growth arrest vs CD44 expression. Oncogene 21: 1196–1207.

    Article  CAS  PubMed  Google Scholar 

  • Sabah M, Cummins R, Leader M, Kay E . (2005). Leiomyosarcoma and malignant fibrous histiocytoma share similar allelic imbalance pattern at 9p. Virchows Arch 446: 251–258.

    Article  PubMed  Google Scholar 

  • Sakurai K, Furukawa C, Haraguchi T, Inada K, Shiogama K, Tagawa T et al. (2011). MicroRNAs miR-199a-5p and -3p Target the Brm subunit of SWI/SNF to generate a double-negative feedback loop in a variety of human cancers. Cancer Res 71: 1680–1689.

    Article  CAS  PubMed  Google Scholar 

  • Sarkar S, Roy BC, Hatano N, Aoyagi T, Gohji K, Kiyama R . (2002). A novel ankyrin repeat-containing gene (Kank) located at 9p24 is a growth suppressor of renal cell carcinoma. J Biol Chem 277: 36585–36591.

    Article  CAS  PubMed  Google Scholar 

  • Solomon B, Varella-Garcia M, Camidge DR . (2009). ALK gene rearrangements: a new therapeutic target in a molecularly defined subset of non-small cell lung cancer. J Thorac Oncol 4: 1450–1454.

    Article  PubMed  Google Scholar 

  • Strobeck MW, Knudsen KE, Fribourg AF, DeCristofaro MF, Weissman BE, Imbalzano AN et al. (2000). BRG-1 is required for RB-mediated cell cycle arrest. Proc Natl Acad Sci USA 97: 7748–7753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strobeck MW, Reisman DN, Gunawardena RW, Betz BL, Angus SP, Knudsen KE et al. (2002). Compensation of BRG-1 function by Brm: insight into the role of the core SWI-SNF subunits in retinoblastoma tumor suppressor signaling. J Biol Chem 277: 4782–4789.

    Article  CAS  PubMed  Google Scholar 

  • Strober BE, Dunaief JL, Guha, Goff SP . (1996). Functional interactions between the hBRM/hBRG1 transcriptional activators and the pRB family of proteins. Mol Cell Biol 16: 1576–1583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tripathi A, Dasgupta S, Roy A, Sengupta A, Roy B, Roychowdhury S et al. (2003). Sequential deletions in both arms of chromosome 9 are associated with the development of head and neck squamous cell carcinoma in Indian patients. J Exp Clin Cancer Res 22: 289–297.

    CAS  PubMed  Google Scholar 

  • Truong T, Hung RJ, Amos CI, Wu X, Bickeboller H, Rosenberger A et al. (2010). Replication of lung cancer susceptibility loci at chromosomes 15q25, 5p15, and 6p21: a pooled analysis from the International Lung Cancer Consortium. J Natl Cancer Inst 102: 959–971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang M, Gu C, Qi T, Tang W, Wang L, Wang S et al. (2007). BAF53 interacts with p53 and functions in p53-mediated p21-gene transcription. J Biochem 142: 613–620.

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Zhang J, Chen X . (2007). The activity of p53 is differentially regulated by Brm- and Brg1-containing SWI/SNF chromatin remodeling complexes. J Biol Chem 282: 37429–37435.

    Article  CAS  PubMed  Google Scholar 

  • Yamamichi N, Yamamichi-Nishina M, Mizutani T, Watanabe H, Minoguchi S, Kobayashi N et al. (2005). The Brm gene suppressed at the post-transcriptional level in various human cell lines is inducible by transient HDAC inhibitor treatment, which exhibits antioncogenic potential. Oncogene 24: 5471–5481.

    Article  CAS  PubMed  Google Scholar 

  • Yue J, Tigyi G . (2006). MicroRNA trafficking and human cancer. Cancer Biol Ther 5: 573–578.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

GL is funded by the Alan B Brown Chair in Molecular Genomics, CCO Chair in Experimental Therapeutics and Population Studies, and Posluns Family Foundation; FAS holds the Scott Taylor Chair in Lung Cancer Research; MST holds the M Qasim Chair in Lung Cancer Translational Research; Supported by the Ontario Ministry of Health and Long Term Care (OMHLTC) and the Lucy Wong Fund. The results presented do not necessarily reflect the views of OMHLTC. Reisman lab funding is from NCI:7R03CA128038-02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D Reisman.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, G., Gramling, S., Munoz, D. et al. Two novel BRM insertion promoter sequence variants are associated with loss of BRM expression and lung cancer risk. Oncogene 30, 3295–3304 (2011). https://doi.org/10.1038/onc.2011.81

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.81

Keywords

This article is cited by

Search

Quick links