Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

p53 inhibits mRNA 3′ processing through its interaction with the CstF/BARD1 complex

Abstract

The mechanisms involved in the p53-dependent control of gene expression following DNA damage have not been completely elucidated. Here, we show that the p53 C terminus associates with factors that are required for the ultraviolet (UV)-induced inhibition of the mRNA 3′ cleavage step of the polyadenylation reaction, such as the tumor suppressor BARD1 and the 3′ processing factor cleavage-stimulation factor 1 (CstF1). We found that p53 can coexist in complexes with CstF and BARD1 in extracts of UV-treated cells, suggesting a role for p53 in mRNA 3′ cleavage following DNA damage. Consistent with this, we found that p53 inhibits 3′ cleavage in vitro and that there is a reverse correlation between the levels of p53 expression and the levels of mRNA 3′ cleavage under different cellular conditions. Supporting these results, a tumor-associated mutation in p53 not only decreases the interaction with BARD1 and CstF, but also decreases the UV-induced inhibition of 3′ processing, all of which is restored by wild-type-p53 expression. We also found that p53 expression levels affect the polyadenylation levels of housekeeping genes, but not of p21 and c-fos genes, which are involved in the DNA damage response (DDR). Here, we identify a novel 3′ RNA processing inhibitory function of p53, adding a new level of complexity to the DDR by linking RNA processing to the p53 network.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Akeo K, Funayama T, Hamada N, Akeo Y, Hiramitsu T, Kobayashi Y . (2007). The effects of ultraviolet irradiation and hypoxia on expression of glutathione peroxidase and glyceraldehyde 3-phosphate dehydrogenase in the cultured retinal pigment epithelium. Tissue Culture Res Commun 26: 149–157.

    Google Scholar 

  • Cevher MA, Kleiman FE . (2010). Connections between 3′ end processing and DNA damage response focus article in Wiley interdisciplinary reviews WIREs RNA. http://wires.wiley.com/WileyCDA/WiresArticle/wisId-WRNA20.html.

  • Cevher MA, Zhang X, Fernandez S, Kim S, Baquero J, Nilsson P ; et al. (2010). Nuclear deadenylation/polyadenylation factors regulate 3′ processing in response to DNA damage. EMBO J 29: 1674–1687.

    Article  CAS  Google Scholar 

  • Chang TC, Wentzel EA, Kent OA, Ramachandran K, Mullendore M, Lee KH et al. (2007). Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell 26: 745–752.

    Article  CAS  Google Scholar 

  • Dheda K, Huggett JF, Bustin SA, Johnson MA, Rook G, Zumla A . (2004). Validation of housekeeping genes for normalizing RNA expression in real-time PCR. Biotechniques 37: 112–119.

    Article  CAS  Google Scholar 

  • Fabbro M, Savage K, Hobson K, Deans AJ, Powell SN, McArthur GA et al. (2004). BRCA1-BARD1 complexes are required for p53Ser-15 phosphorylation and a G1/S arrest following ionizing radiation-induced DNA damage. J Biol Chem 279: 31251–31258.

    Article  CAS  Google Scholar 

  • Feki A, Jefford CE, Berardi P, Wu JY, Cartier L, Krause KH et al. (2005). BARD1 induces apoptosis by catalysing phosphorylation of p53 by DNA-damage response kinase. Oncogene 24: 3726–3736.

    Article  CAS  Google Scholar 

  • Fong S, King F, Shtivelman E . (2010). CC3/TIP30 affects DNA damage repair. BMC Cell Biol 11: 23.

    Article  Google Scholar 

  • Fox JT, Shin WK, Caudill MA, Stover PJ . (2009). A UV-responsive internal ribosome entry site enhances serine hydroxymethyltransferase 1 expression for DNA damage repair. J Biol Chem 284: 31097–31108.

    Article  CAS  Google Scholar 

  • Fu N, Drinnenberg I, Kelso J, Wu JR, Pääbo S, Zeng R et al. (2007). Comparison of protein and mRNA expression evolution in humans and chimpanzees. PLoS One 2: e216.

    Article  Google Scholar 

  • Gomes NP, Bjerke G, Llorente B, Szostek SA, Emerson BM, Espinosa JM . (2006). Gene-specific requirement for P-TEFb activity and RNA polymerase II phosphorylation within the p53 transcriptional program. Genes Dev 20: 601–612.

    Article  CAS  Google Scholar 

  • Gry M, Rimini R, Strömberg S, Asplund A, Pontén F, Uhlén M et al. (2009). Correlations between RNA and protein expression profiles in 23 human cell lines. BMC Genom 10: 365.

    Article  Google Scholar 

  • He X, He L, Hannon GJ . (2007). The guardian's little helper: microRNAs in the p53 tumor suppressor network. Cancer Res 67: 11099–11101.

    Article  CAS  Google Scholar 

  • Hirose Y, Manley JL . (1998). RNA polymerase II is an essential mRNA polyadenylation factor. Nature 395: 93–96.

    Article  CAS  Google Scholar 

  • Irminger-Finger I, Leung WC, Li J, Dubois-Dauphin M, Harb J, Feki A et al. (2001). Identification of BARD1 as mediator between proapoptotic stress and p53-dependent apoptosis. Mol Cell 8: 1255–1266.

    Article  CAS  Google Scholar 

  • Ji Z, Lee JY, Pan Z, Jiang B, Tian B . (2009). Progressive lengthening of 3′ untranslated regions of mRNAs by alternative polyadenylation during mouse embryonic development. Proc Natl Acad Sci USA 106: 7028–7033.

    Article  CAS  Google Scholar 

  • Kessis TD, Slebos RJ, Nelson WG, Kastan MB, Plunkett BS, Han SM et al. (1993). Human papillomavirus 16 E6 expression disrupts the p53-mediated cellular response to DNA damage. Proc Natl Acad Sci USA 90: 3988–3992.

    Article  CAS  Google Scholar 

  • Kleiman FE, Manley JL . (1999). Functional interaction of BRCA1-associated BARD1 with polyadenylation factor CstF-50. Science 285: 1576–1579.

    Article  CAS  Google Scholar 

  • Kleiman FE, Manley JL . (2001). The BARD1-CstF-50 interaction links mRNA 3′ end formation to DNA damage and tumor suppression. Cell 104: 743–753.

    Article  CAS  Google Scholar 

  • Kleiman FE, Wu-Baer F, Fonseca D, Kaneko S, Baer R, Manley JL . (2005). BRCA1/BARD1 inhibition of mRNA 3′ processing involves targeted degradation of RNA polymerase II. Genes Dev 19: 1227–1237.

    Article  CAS  Google Scholar 

  • Levine AJ, Hu W, Feng Z . (2006). The P53 pathway: what questions remain to be explored? Cell Death Differ 13: 1027–1036.

    Article  CAS  Google Scholar 

  • Ljungman M, Zhang F, Chen F, Rainbow AJ, McKay BC . (1999). Inhibition of RNA polymerase II as a trigger for the p53 response. Oncogene 18: 583–592.

    Article  CAS  Google Scholar 

  • Maccoux LJ, Clements DN, Salway F, Day PJ . (2007). Identification of new reference genes for the normalisation of canine osteoarthritic joint tissue transcripts from microarray data. BMC Mol Biol 8: 62–72.

    Article  Google Scholar 

  • McCracken S, Fong N, Yankulov K et al. (1997). The C-terminal domain of RNA polymerase II couples mRNA processing to transcription. Nature 385: 357–361.

    Article  CAS  Google Scholar 

  • McKay BC, Becerril C, Ljungman M . (2001). P53 plays a protective role against UV- and cisplatin-induced apoptosis in transcription-coupled repair proficient fibroblasts. Oncogene 20: 6805–6808.

    Article  CAS  Google Scholar 

  • McKay BC, Ljungman M . (1999). Role for p53 in the recovery of transcription and protection against apoptosis induced by ultraviolet light. Neoplasia 1: 276–284.

    Article  CAS  Google Scholar 

  • Mandel CR, Bai Y, Tong L . (2008). Protein factors in pre-mRNA 3′-end processing. Cell Mol Life Sci 65: 1099–1122.

    Article  CAS  Google Scholar 

  • Mayr C, Bartel DP . (2009). Widespread shortening of 3′UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell 138: 673–684.

    Article  CAS  Google Scholar 

  • Mirkin N, Fonseca D, Mohammed S, Cevher MA, Manley JL, Kleiman FE . 2008. The 3′ processing factor CstF functions in the DNA repair response. Nucleic Acids Res 36: 1792–1804.

    Article  CAS  Google Scholar 

  • Noda A, Toma-Aiba Y, Fujiwara Y . (2000). A unique, short sequence determines p53 gene basal and UV-inducible expression in normal human cells. Oncogene 19: 21–31.

    Article  CAS  Google Scholar 

  • Rozenblatt-Rosen O, Nagaike T, Francis JM, Kaneko S, Glatt KA, Hughes CM et al. (2009). The tumor suppressor Cdc73 functionally associates with CPSF and CstF 3′ mRNA processing factors. Proc Natl Acad Sci USA 106: 755–760.

    Article  CAS  Google Scholar 

  • Sandberg R, Neilson JR, Sarma A, Sharp PA, Burge CB . (2008). Proliferating cells express mRNAs with shortened 3′ untranslated regions and fewer microRNA target sites. Science 320: 1643–1647.

    Article  CAS  Google Scholar 

  • Sauer M, Bretz AC, Beinoraviciute-Kellner R, Beitzinger M, Burek C, Rosenwald A et al. (2008). C-terminal diversity within the p53 family accounts for differences in DNA binding and transcriptional activity. Nucleic Acids Res 36: 1900–1912.

    Article  CAS  Google Scholar 

  • Scorilas A . (2002). Polyadenylate polymerase (PAP) and 3′ end pre-mRNA processing: function, assays, and association with disease. Crit Rev Clin Lab Sci 39: 193–224.

    Article  CAS  Google Scholar 

  • Shi Y, Di Giammartino DC, Taylor D, Sarkeshik A, Rice III WJ, Yates JR et al. (2009). Molecular architecture of the human pre-mRNA 3′ processing complex. Mol Cell 33: 365–376.

    Article  CAS  Google Scholar 

  • Singh P, Alley TL, Wright SM, Kamdar S, Schott W, Wilpan RY et al. (2009). Global changes in processing of mRNA 3′ untranslated regions characterize clinically distinct cancer subtypes. Cancer Res 69: 9422–9430.

    Article  CAS  Google Scholar 

  • Takagaki Y, Manley JL . (1998). Levels of polyadenylation factor CstF-64 control IgM heavy chain mRNA accumulation and other events associated with B cell differentiation. Mol Cell 2: 761–771.

    Article  CAS  Google Scholar 

  • Takagaki Y, Ryner LC, Manley JL . (1989). Four factors are required for 3′-end cleavage of pre-mRNAs. Genes Dev 3: 1711–1724.

    Article  CAS  Google Scholar 

  • Takwi A, Li Y . (2009). The p53 pathway encounters the microRNA world. Curr Genom 10: 194–197.

    Article  CAS  Google Scholar 

  • Topalian SL, Kaneko S, Gonzales MI, Bond GL, Ward Y, Manley JL . (2001). Identification and functional characterization of neo-poly(A) polymerase, an RNA processing enzyme overexpressed in human tumors. Mol Cell Biol 21: 5614–5623.

    Article  CAS  Google Scholar 

  • Vogelstein B, Lane D, Levine AJ . (2000). Surfing the p53 network. Nature 408: 307–310.

    Article  CAS  Google Scholar 

  • Vousden KH . (2006). Outcomes of p53 activation—spoilt for choice. J Cell Sci 119: 5015–5020.

    Article  CAS  Google Scholar 

  • Wei Q . (2005). Pitx2a binds to human papillomavirus type 18 E6 protein and inhibits E6-mediated P53 degradation in HeLa cells. J Biol Chem 280: 37790–37797.

    Article  CAS  Google Scholar 

  • Yu J, Zhang L, Hwang PM, Rago C, Kinzler KW, Vogelstein B . (1999). Identification and classification of p53-regulated genes. Proc Natl Acad Sci USA 96: 14517–14522.

    Article  CAS  Google Scholar 

  • Zhu ZH, Yu YP, Shi YK, Nelson JB, Luo JH . (2009). CSR1 induces cell death through inactivation of CPSF3. Oncogene 28: 41–51.

    Article  CAS  Google Scholar 

  • Zlotorynski E, Agami R . (2008). A PASport to cellular proliferation. Cell 134: 208–210.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr JL Manley for anti-CstF2 antibodies, Dr B Vogelstein and Dr J Bargonetti for cell lines DLD-1 and D-A2, Dr EK Boamah for technical advice, Dr C Prives for p53 encoding plasmids, Dr R Baer for BARD1 encoding plasmids and Dr S Piñol-Roma and Dr MA Cevher for advice and discussion. This work is supported by National Institute of General Medical Sciences Grant SC1GM083806 to FEK and by Minority Access to Research Careers Program (MARC) to BA and CT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F E Kleiman.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nazeer, F., Devany, E., Mohammed, S. et al. p53 inhibits mRNA 3′ processing through its interaction with the CstF/BARD1 complex. Oncogene 30, 3073–3083 (2011). https://doi.org/10.1038/onc.2011.29

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.29

Keywords

This article is cited by

Search

Quick links