Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Human polynucleotide phosphorylase (hPNPaseold-35): an evolutionary conserved gene with an expanding repertoire of RNA degradation functions

Abstract

Human polynucleotide phosphorylase (hPNPaseold-35) is an evolutionary conserved RNA-processing enzyme with expanding roles in regulating cellular physiology. hPNPaseold-35 was cloned using an innovative ‘overlapping pathway screening’ strategy designed to identify genes coordinately regulated during the processes of cellular differentiation and senescence. Although hPNPaseold-35 structurally and biochemically resembles PNPase of other species, overexpression and inhibition studies reveal that hPNPaseold-35 has evolved to serve more specialized and diversified functions in humans. Targeting specific mRNA or non-coding small microRNA, hPNPaseold-35 modulates gene expression that in turn has a pivotal role in regulating normal physiological and pathological processes. In these contexts, targeted overexpression of hPNPaseold-35 represents a novel strategy to selectively downregulate RNA expression and consequently intervene in a variety of pathophysiological conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Allmang C, Petfalski E, Podtelejnikov A, Mann M, Tollervey D, Mitchell P . (1999). The yeast exosome and human PM-Scl are related complexes of 3′→5′ exonucleases. Genes Dev 13: 2148–2158.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Almeida FC, DeSalle R, Leszczyniecka M, Fisher PB . (2008). Examining ancient inter-domain horizontal gene transfer. Evol Bioinformat 4: 109–119.

    CAS  Google Scholar 

  • Ambros V . (2004). The functions of animal microRNAs. Nature 431: 350–355.

    Article  CAS  PubMed  Google Scholar 

  • Baldwin AS . (1996). The NF-kappa B and I kappa B proteins: new discoveries and insights. Annu Rev Immunol 14: 649–683.

    CAS  PubMed  Google Scholar 

  • Barnes PJ, Karin M . (1997). Nuclear factor-kappaB: a pivotal transcription factor in chronic inflammatory diseases. N Engl J Med 336: 1–10.

    Google Scholar 

  • Bueno MJ, Pérez de Castro I, Gómez de Cedrón M, Santos J, Calin GA, Cigudosa JC et al. (2008). Genetic and epigenetic silencing of microRNA-203 enhances ABL1 and BCR-ABL1. Cancer Cell 13: 496–506.

    CAS  PubMed  Google Scholar 

  • Buttner K, Wenig K, Hopfner KP . (2006). The exosome: a macromolecular cage for controlled RNA degradation. Mol Microbiol 61: 1372–1379.

    PubMed  Google Scholar 

  • Calin GA, Croce CM . (2006). MicroRNA-cancer connection: the beginning of a new tale. Cancer Res 66: 7390–7394.

    CAS  PubMed  Google Scholar 

  • Calin GA, Croce CM . (2008). MicroRNA signatures in human cancers. Nat Rev Cancer 6: 857–866.

    Google Scholar 

  • Campisi J . (1992). Gene expression in quiescent and senescent fibroblasts. Ann NY Acad Sci 663: 195–201.

    CAS  PubMed  Google Scholar 

  • Cao D, Parker R . (2003). Computational modeling and experimental analysis of nonsense-mediated decay in yeast. Cell 113: 533–545.

    CAS  PubMed  Google Scholar 

  • Chan I, Lebedeva IV, Su ZZ, Sarkar D, Valerie K, Fisher PB . (2008). Progression elevated gene-3 promoter (PEG-Prom) confers cancer cell selectivity to human polynucleotide phosphorylase (hPNPase(old-35))-mediated growth suppression. J Cell Physiol 215: 401–409.

    CAS  PubMed  Google Scholar 

  • Chang DD, Clayton DA . (1987). A mammalian mitochondrial RNA processing activity contains nucleus-encoded RNA. Science 235: 1178–1184.

    CAS  PubMed  Google Scholar 

  • Chang TC, Yu D, Lee YS, Wentzel EA, Arking DE, West KM et al. (2008). Widespread microRNA repression by Myc contributes to tumorigenesis. Nature Genet 40: 43–50.

    CAS  PubMed  Google Scholar 

  • Chen HW, Koehler CM, Teitell MA . (2006a). Human polynucleotide phosphorylase: location matters. Trends Cell Biol 17: 600–608.

    Google Scholar 

  • Chen HW, Rainey RN, Balatoni CE, Dawson DW, Troke JJ, Wasiak S et al. (2006b). Mammalian polynucleotide phosphorylase is an intermembrane space RNase that maintains mitochondrial homeostasis. Mol Cell Biol 26: 8475–8487.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen JF, Mandel EM, Thomson JM, Wu Q, Callis TE, Hammond SM et al. (2006c). The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nature Genet 38: 228–233.

    CAS  PubMed  Google Scholar 

  • Chen QM . (2000). Replicative senescence and oxidant-induced premature senescence. Beyond the control of cell cycle checkpoints. Ann NY Acad Sci 908: 111–125.

    CAS  PubMed  Google Scholar 

  • Colavitti R, Finkel T . (2005). Reactive oxygen species as mediators of cellular senescence. IUBMB Life 57: 277–281.

    CAS  PubMed  Google Scholar 

  • Das SK, Sokhi UK, Bhutia SK, Azab B, Su ZZ, Sarkar D et al. (2010). Human polynucleotide phosphorylase selectively and preferentially degrades microRNA-221 in human melanoma cells. Proc Natl Acad Sci USA 107: 11948–11953.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Deutscher MP . (1993a). Promiscuous exoribonucleases of Escherichia coli. J Bacteriol 175: 4577–4583.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Deutscher MP . (1993b). Ribonuclease multiplicity, diversity, and complexity. J Biol Chem 268: 13011–13014.

    CAS  PubMed  Google Scholar 

  • Deutscher MP, Li Z . (2001). Exoribonucleases and their multiple roles in RNA metabolism. Prog Nucleic Acid Res Mol Biol 66: 67–105.

    CAS  PubMed  Google Scholar 

  • Dodson RE, Shapiro DJ . (2002). Regulation of pathways of mRNA destabilization and stabilization. Prog Nucleic Acid Res Mol Biol 72: 129–164.

    CAS  PubMed  Google Scholar 

  • Filipowicz W, Bhattacharyya S, Sonenberg N . (2008). Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9: 102–114.

    CAS  PubMed  Google Scholar 

  • Finkel T, Holbrook NJ . (2000). Oxidants, oxidative stress and the biology of ageing. Nature 408: 239–247.

    CAS  PubMed  Google Scholar 

  • Fisher PB, Grant S . (1985). Effects of interferon on differentiation of normal and tumor cells. Pharmacol Ther 27: 143–166.

    CAS  PubMed  Google Scholar 

  • Fisher PB, Hermo Jr H, Solowey WE, Dietrich MC, Edwalds GM, Weinstein IB et al. (1986). Effect of recombinant human fibroblast interferonand mezerein on growth, differentiation, immune interferon binding and tumor associated antigen expression in human melanoma cells. Anticancer Res 6: 765–774.

    CAS  PubMed  Google Scholar 

  • Fisher PB, Prignoli DR, Hermo Jr H, Weinstein IB, Pestka S . (1985). Effects of combined treatment with interferon and mezerein on melanogenesis and growth in human melanoma cells. J Interferon Res 5: 11–22.

    CAS  PubMed  Google Scholar 

  • Fornari F, Gramantieri L, Ferracin M, Veronese A, Sabbioni S, Calin GA et al. (2008). MiR-221 controls CDKN1C/p57 and CDKN1B/p27 expression in human hepatocellular carcinoma. Oncogene 27: 5651–5661.

    CAS  PubMed  Google Scholar 

  • Frischmeyer PA, van Hoof A, O'Donnell K, Guerrerio AL, Parker R, Dietz HC . (2002). An mRNA surveillance mechanism that eliminates transcripts lacking termination codons. Science 295: 2258–2261.

    Article  CAS  PubMed  Google Scholar 

  • Fukuhara N, Tagawa H, Kameoka Y, Kasugai Y, Karnan S, Kameoka J et al. (2006). Characterization of target genes at the 2p15-16 amplicon in diffuse large B-cell lymphoma. Cancer Sci 97: 499–504.

    CAS  PubMed  Google Scholar 

  • Gewartowski K, Tomecki R, Muchowski L, Dmochow Ska A, Dzwonek A, Malecki M et al. (2006). Up-regulation of human PNPase mRNA by beta-interferon has no effect on protein level in melanoma cell lines. Acta Biochim Pol 53: 179–188.

    CAS  PubMed  Google Scholar 

  • Guarini L, Graham GM, Jiang H, Ferrone S, Zucker S, Fisher PB . (1992). Modulation of the antigenic phenotype of human melanoma cells by differentiation-inducing and growth suppressing agents. Pigment Cell Res 2: 123–131.

    CAS  PubMed  Google Scholar 

  • Guarini L, Temponi M, Edwalds GM, Vita JR, Fisher PB, Ferrone S . (1989). In vitro differentiation and antigenic changes in human melanoma cell lines. Cancer Immunol Immunother 30: 262–268.

    CAS  PubMed  Google Scholar 

  • Hagen TM, Yowe DL, Bartholomew JC, Wehr CM, Do KL, Park JY et al. (1997). Mitochondrial decay in hepatocytes from old rats: membrane potential declines, heterogeneity and oxidants increase. Proc Natl Acad Sci USA 94: 3064–3069.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harman D . (1957). Aging: a theory based on free radical and radiation chemistry. J Gerontol 2: 298–300.

    Google Scholar 

  • Hayflick L . (1976). The cell biology of human aging. N Engl J Med 295: 1302–1308.

    CAS  PubMed  Google Scholar 

  • He L, He X, Lowe SW, Hannon GJ . (2007). microRNAs join the p53 network—another piece in the tumour suppression puzzle. Nature Rev Cancer 7: 819–822.

    CAS  Google Scholar 

  • He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S et al. (2005). A microRNA polycistron as a potential human oncogene. Nature 435: 828–833.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hoof A, Parker R . (1999). The exosome: a proteasome for RNA? Cell 99: 347–350.

    PubMed  Google Scholar 

  • Hayakawa H, Sekiguchi M . (2006). Human polynucleotide phosphorylase protein in response to oxidative stress. Biochemistry 45: 6749–6755.

    CAS  PubMed  Google Scholar 

  • Jarrige A, Brechemier-Baey D, Mathy N, Duche O, Portier C . (2002). Mutational analysis of polynucleotide phosphorylase from Escherichia coli. J Mol Biol 321: 397–409.

    CAS  PubMed  Google Scholar 

  • Jarrige AC, Mathy N, Portier C . (2001). PNPase autocontrols its expression by degrading a double-stranded structure in the pnp mRNA leader. EMBO J 20: 6845–6855.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang H, Lin J, Young SM, Goldstein NI, Waxman S, Davila V et al. (1995). Cell cycle gene expression and E2F transcription factor complexes in human melanoma cells induced to terminally differentiate. Oncogene 11: 1179–1189.

    CAS  PubMed  Google Scholar 

  • Jiang H, Su ZZ, Boyd J, Fisher PB . (1993). Gene expression changes associated with reversible growth suppression and the induction of terminal differentiation in human melanoma cells. Mol Cell Differ 1: 41–66.

    CAS  Google Scholar 

  • Kennedy S, Wang D, Ruvkun GA . (2004). Conserved siRNA degrading RNase negatively regulates RNA interference in C. elegans. Nature 427: 645–649.

    CAS  PubMed  Google Scholar 

  • Khidr L, Wu G, Davila A, Procaccio V, Wallace D, Lee WH . (2008). Role of SUV3 helicase in maintaining mitochondrial homeostasis in human cells. J Biol Chem 283: 27064–27073.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kiecolt-Glaser JK, Preacher KJ, MacCallum RC, Atkinson C, Malarkey WB, Glaser R . (2003). Chronic stress and age-related increases in the proinflammatory cytokine IL-6. Proc Natl Acad Sci USA 100: 9090–9095.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim V . (2005). MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol 6: 376–385.

    CAS  PubMed  Google Scholar 

  • Kirschner LS, Taymans SE, Pack S, Pak E, Pike BL, Chandrasekharappa SC et al. (1999). Genomic mapping of chromosomal region 2p15-p21 (D2S378-D2S391): integration of Genemap’98 within a framework of yeast and bacterial artificial chromosomes. Genomics 62: 21–33.

    CAS  PubMed  Google Scholar 

  • Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A et al. (2007). A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129: 1401–1414.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leszczyniecka M, DeSalle R, Kang DC, Fisher PB . (2004). The origin of polynucleotide phosphorylase domains. Mol Phylogenet Evol 31: 123–130.

    CAS  PubMed  Google Scholar 

  • Leszczyniecka M, Kang DC, Sarkar D, Su ZZ, Holmes M, Valerie K et al. (2002). Identification and cloning of human polynucleotide phosphorylase, hPNPaseold-35, in the context of terminal differentiation and cellular senescence. Proc Natl Acad Sci USA 99: 16636–16641.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leszczyniecka M, Su ZZ, Kang DC, Sarkar D, Fisher PB . (2003). Expression regulation and genomic organization of human polynucleotide phosphorylase, hPNPaseold-35, a type I interferon inducible early response gene. Gene 316: 143–156.

    CAS  PubMed  Google Scholar 

  • Littauer UZ, Grunberg-Manago M . (1999). Polynucleotide phosphorylase. In: Creighton TE (ed). Encyclopedia of Molecular Biology, vol. 3. Wiley: New York, p 1911.

  • Mitchell P, Petfalski E, Shevchenko A, Mann M, Tollervey D . (1997). The exosome: a conserved eukaryotic RNA processing complex containing multiple 3′→5′ exoribonucleases. Cell 91: 457–466.

    CAS  PubMed  Google Scholar 

  • Mitchell P, Tollervey D . (2000). Musing on the structural organization of the exosome complex. Nat Struct Biol 7: 843–846.

    CAS  PubMed  Google Scholar 

  • Mohanty BK, Kushner SR . (2000). Polynucleotide phosphorylase functions both as a 3′ right-arrow 5′ exonuclease and a poly(A) polymerase in Escherichia coli. Proc Natl Acad Sci USA 97: 11966–11971.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nagaike T, Suzuki T, Katoh T, Ueda T . (2005). Human mitochondrial mRNA are stabilized with polyadenylation regulated by mitochondria-specific poly (A) polymerase and polynucleotide phosphorylase. J Biol Chem 280: 19721–19727.

    CAS  PubMed  Google Scholar 

  • Obaya AJ, Mateyak MK, Sedivy JM . (1999). Mysterious liaisons: the relationship between c-Myc and the cell cycle. Oncogene 18: 2934–2941.

    CAS  PubMed  Google Scholar 

  • O'Hagan RC, Ohh M, David G, de Alboran IM, Alt FW, Kaelin Jr WG et al. (2000). Myc-enhanced expression of Cul1 promotes ubiquitin-dependent proteolysis and cell cycle progression. Genes Dev 14: 2185–2191.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Parker R, Song H . (2004). The enzymes and control of eukaryotic mRNA turnover. Nat Struct Mol Biol 11: 121–127.

    CAS  PubMed  Google Scholar 

  • Passos JF, von Zglinicki T, Saretzki G . (2006). Mitochondrial dysfunction and cell senescence: cause or consequence? Rejuvenation Res 9: 64–68.

    CAS  PubMed  Google Scholar 

  • Piwowarski J, Grzechnik P, Dziembowski A, Dmochowska A, Minczuk M, Stepien PP . (2003). Human polynucleotide phosphorylase, hPNPase, is localized in mitochondria. J Mol Biol 329: 853–857.

    CAS  PubMed  Google Scholar 

  • Portnoy V, Evguenieva-Hackenberg E, Klein F, Walter P, Lorentzen E, Klug G et al. (2005). RNA polyadenylation in Archaea: not observed in Haloferax while the exosome polyadenylates RNA in Sulfolobus. EMBO Rep 6: 1188–1193.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ramachandran V, Chen X . (2008). Degradation of microRNAs by a family of exoribonucleases in Arabidopsis. Science 321: 1490–1492.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raijmakers R, Egberts WV, van Venrooij WJ, Pruijn GJ . (2002). Protein-protein interactions between human exosome components support the assembly of RNase PH-type subunits into a six-membered PNPase-like ring. J Mol Biol 323: 653–663.

    CAS  PubMed  Google Scholar 

  • Raijmakers R, Schilders G, Pruijn GJ . (2004). The exosome, a molecular machine for controlled RNA degradation in both nucleus and cytoplasm. Eur J Cell Biol 83: 175–183.

    CAS  PubMed  Google Scholar 

  • Rao PK, Kumar RM, Farkhondeh M, Baskerville S, Lodish HF . (2006). Myogenic factors that regulateexpression of muscle-specific microRNAs. Proc Natl Acad Sci USA 103: 8721–8726.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Regonesi ME, Briani F, Ghetta A, Zangrossi S, Ghisotti D, Tortora P et al. (2004). A mutation in polynucleotide phosphorylase from Escherichia coli impairing RNA binding and degradosome stability. Nucleic Acids Res 32: 1006–1017.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sarkar D, Fisher PB . (2006). Molecular mechanisms of aging-associated inflammation. Cancer Lett 236: 13–23.

    CAS  PubMed  Google Scholar 

  • Sarkar D, Lebedeva IV, Emdad L, Kang DC, Baldwin Jr AS, Fisher PB . (2004). Human polynucleotide phosphorylase (hPNPaseold-35): a potential link between aging and inflammation. Cancer Res 64: 7473–7478.

    CAS  PubMed  Google Scholar 

  • Sarkar D, Leszczyniecka M, Kang DC, Lebedeva IV, Valerie K, Dhar S et al. (2003). Downregulation of Myc as a potential target for growth arrest induced by human polynucleotide phosphorylase (hPNPaseold-35) in human melanoma cells. J Biol Chem 278: 24542–24551.

    CAS  PubMed  Google Scholar 

  • Sarkar D, Park ES, Barber GN, Fisher PB . (2007). Activation of double-stranded RNA dependent protein kinase, a new pathway by which human polynucleotide phosphorylase (hPNPase(old-35)) induces apoptosis. Cancer Res 67: 7948–7953.

    CAS  PubMed  Google Scholar 

  • Sarkar D, Park ES, Emdad L, Randolph A, Valerie K, Fisher PB . (2005). Defining the domains of human polynucleotide phosphorylase (hPNPaseOLD-35) mediating cellular senescence. Mol Cell Biol 25: 7333–7343.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sarkar D, Park ES, Fisher PB . (2006). Defining the mechanism by which IFN-beta downregulates c-myc expression in human melanoma cells: pivotal role for human polynucleotide phosphorylase (hPNPaseold-35). Cell Death Differ 13: 1541–1553.

    CAS  PubMed  Google Scholar 

  • Schreck R, Albermann K, Baeuerle PA . (1992). Nuclear factor kappa B: an oxidative stress-responsive transcription factor of eukaryotic cells. Free Radic Res Commun 17: 221–237.

    CAS  PubMed  Google Scholar 

  • See YP, Fitt PS . (1972). Partial purification and properties of rat liver mitochondrial polynucleotide phosphorylase. Biochem J 130: 343–353.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW . (1997). Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88: 593–602.

    CAS  PubMed  Google Scholar 

  • Slomovic S, Slomovic S, Laufer D, Geiger D, Schuster G . (2005). Polyadenylation and degradation of human mitochondrial RNA: the prokaryotic past leaves its mark. Mol Cell Biol 25: 6427–6435.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stickney LM, Hankins JS, Miao X, Mackie GA . (2005). Function of the conserved S1 and KH domains in polynucleotide phosphorylase. J Bacteriol 187: 7214–7221.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Suh MR, Lee Y, Kim JY, Kim SK, Moon SH, Lee JY et al. (2004). Human embryonic stem cells express a unique set of microRNAs. Dev Biol 270: 488–498.

    CAS  PubMed  Google Scholar 

  • Symmons MF, Jones GH, Luisi BF . (2000). A duplicated fold is the structural basis for polynucleotide phosphorylase catalytic activity, processivity, and regulation. Structure Fold Des 8: 1215–1226.

    CAS  PubMed  Google Scholar 

  • Symmons MF, Williams MG, Luisi BF, Jones GH, Carpousis AJ . (2002). Running rings around RNA: a superfamily of phosphate-dependent RNases. Trends Biochem Sci 27: 11–18.

    CAS  PubMed  Google Scholar 

  • Temperley RJ, Seneca SH, Tonska K, Bartnik E, Bindoff LA, Lightowlers RN et al. (2003). Investigation of a pathogenic mtDNA microdeletion reveals a translation-dependent deadenylation decay pathway in human mitochondria. Hum Mol Genet 12: 2341–2348.

    CAS  PubMed  Google Scholar 

  • Thomson JM, Newman M, Parker JS, Morin-Kensicki EM, Wright T, Hammond SM . (2006). Extensive post-transcriptional regulation of microRNAs and its implications for cancer. Genes Dev 20: 2202–2207.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tsuchiya S, Okuno Y, Tsujimoto G . (2006). Micro-RNA: biogenetic and functional mechanisms and involvements in cell differentiation and cancer. J Pharmacol Sci 101: 267–270.

    CAS  PubMed  Google Scholar 

  • Tucker M, Parker R . (2000). Mechanisms and control of mRNA decapping in Saccharomyces cerevisiae. Annu Rev Biochem 69: 571–595.

    CAS  PubMed  Google Scholar 

  • Van Maerken T, Sarkar D, Speleman F, Dent P, Weiss WA, Fisher PB . (2009). Adenovirus-mediated hPNPase(old-35) gene transfer as a therapeutic strategy for neuroblastoma. J Cell Physiol 219: 707–715.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang G, Chen HW, Oktay Y, Zhang J, Allen EL, Smith GM et al. (2010). PNPase regulates RNA import into mitochondria. Cell 142: 456–467.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Kiledjian M . (2001). Functional link between the mammalian exosome and mRNA decapping. Cell 107: 751–762.

    CAS  PubMed  Google Scholar 

  • Wang DD, Shu Z, Lieser SA, Chen PL, Lee WH . (2009). Human mitochondrial SUV3 and polynucleotide phosphorylase form a 330-kDa heteropentamer to cooperatively degrade double-stranded RNA with a 3′-to-5′ directionality. J Biol Chem 284: 20812–20821.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J, Li Z . (2008). Human polynucleotide phosphorylase reduces oxidative RNA damage and protects HeLa cell against oxidative stress. Biochem Biophys Res Commun 372: 288–292.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wulczyn FG, Smirnova L, Rybak A, Brandt C, Kwidzinski E, Ninnemann O et al. (2007). Post-transcriptional regulation of the let-7 microRNA during neural cell specification. FASEB J 21: 415–426.

    CAS  PubMed  Google Scholar 

  • Yamanaka K, Inouye M . (2001). Selective mRNA degradation by polynucleotide phosphorylase in cold shock adaptation in Escherichia coli. J Bacteriol 183: 2808–2816.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yehudai-Resheff S, Hirsh M, Schuster G . (2001). Polynucleotide phosphorylase functions as both an exonuclease and a poly (A) polymerase in spinach chloroplasts. Mol Cell Biol 21: 5408–5416.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yehudai-Resheff S, Portnoy V, Yogev S, Adir N, Schuster G . (2003). Domain analysis of the chloroplast polynucleotide phosphorylase reveals discrete functions in RNA degradation, polyadenylation, and sequence homology with exosome proteins. Plant Cell 15: 2003–2019.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported in part by NIH grants R01 CA097318, R01 CA127641, CA134721, and P01 CA104177, the Samuel Waxman Cancer Research Foundation and the National Foundation for Cancer Research (PBF) and NIH grant R01 CA134721 (DS). DS is the Harrison Endowed Scholar in Cancer Research. PBF holds the Thelma Newmeyer Corman Chair in Cancer Research and is a SWCRF Investigator.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P B Fisher.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Das, S., Bhutia, S., Sokhi, U. et al. Human polynucleotide phosphorylase (hPNPaseold-35): an evolutionary conserved gene with an expanding repertoire of RNA degradation functions. Oncogene 30, 1733–1743 (2011). https://doi.org/10.1038/onc.2010.572

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.572

Keywords

This article is cited by

Search

Quick links