Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Loss of Rassf1a enhances p53-mediated tumor predisposition and accelerates progression to aneuploidy

Abstract

Loss of RASSF1A leads to several mitotic abnormalities, including cytokinesis failure and tetraploidization. Uncontrolled proliferation of tetraploid cells is known to trigger genomic instability and tumor development and is normally prevented through activation of a p53-dependent tetraploidy checkpoint. RASSF1A is the most commonly silenced and p53 is the most frequently mutated tumor suppressor gene in human cancer. However, their mutual contribution to tumorigenesis has never been investigated in animal models. Here, we explore whether concomitant loss of RASSF1A and p53 will result in increased levels of aneuploidy, genomic instability and tumorigenesis. We have intercrossed Rassf1a-knockout mice with mice lacking the p53 gene and generated a combination of single- and compound-mutant animals. Rassf1a−/− p53−/− mice were viable and fertile and developed normally. However, these mice were remarkably tumor prone and succumbed to malignancies significantly faster than single-mutant littermates, with a median survival time of 136 days (versus 158 days in p53−/− mice, P=0.0207, and >600 days in Rassf1a−/− animals, P<0.0001). Rassf1a-null mice with one functional p53 allele displayed a more moderate, yet tumor-prone phenotype, characterized by increased tumor multiplicity as compared with single knockouts. On cell-cycle profiling and cytogenetic analysis, cells derived from Rassf1a−/− p53−/− mice exhibited several mitotic defects associated with high levels of tetraploidy/aneuploidy. Conversely, cells with a proficient p53 allele could better cope with the mitotic failures imposed by Rassf1a loss. Altogether, we provide the first experimental evidence for a pivotal role of Rassf1a as an early ‘gatekeeper’ gene, whose loss of function deteriorates cellular fitness by enhancing tetraploidization. Concomitant loss of p53, which causes unrestrained propagation of tetraploids into aneuploid cells, further undermines genomic stability and accelerates tumorigenesis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Agathanggelou A, Cooper WN, Latif F . (2005). Role of the Ras-association domain family 1 tumor suppressor gene in human cancers. Cancer Res 65: 3497–3508.

    Article  CAS  PubMed  Google Scholar 

  • Attardi LD, de Vries A, Jacks T . (2004). Activation of the p53-dependent G1 checkpoint response in mouse embryo fibroblasts depends on the specific DNA damage inducer. Oncogene 23: 973–980.

    Article  CAS  PubMed  Google Scholar 

  • Baksh S, Tommasi S, Fenton S, Yu VC, Martins LM, Pfeifer GP et al. (2005). The tumor suppressor RASSF1A and MAP-1 link death receptor signaling to Bax conformational change and cell death. Mol Cell 18: 637–650.

    Article  CAS  PubMed  Google Scholar 

  • Burds AA, Lutum AS, Sorger PK . (2005). Generating chromosome instability through the simultaneous deletion of Mad2 and p53. Proc Natl Acad Sci USA 102: 11296–11301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caldwell CM, Green RA, Kaplan KB . (2007). APC mutations lead to cytokinetic failures in vitro and tetraploid genotypes in Min mice. J Cell Biol 178: 1109–1120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chi YH, Ward JM, Cheng LI, Yasunaga J, Jeang KT . (2008). Spindle assembly checkpoint and p53 deficiencies cooperate for tumorigenesis in mice. Int J Cancer 124: 1483–1489.

    Article  Google Scholar 

  • Cross SM, Sanchez CA, Morgan CA, Schimke MK, Ramel S, Idzerda RL et al. (1995). A p53-dependent mouse spindle checkpoint. Science 267: 1353–1356.

    Article  CAS  PubMed  Google Scholar 

  • Dallol A, Agathanggelou A, Fenton SL, Ahmed-Choudhury J, Hesson L, Vos MD et al. (2004). RASSF1A interacts with microtubule-associated proteins and modulates microtubule dynamics. Cancer Res 64: 4112–4116.

    Article  CAS  PubMed  Google Scholar 

  • Dammann R, Li C, Yoon JH, Chin PL, Bates S, Pfeifer GP . (2000). Epigenetic inactivation of a RAS association domain family protein from the lung tumour suppressor locus 3p21.3. Nat Genet 25: 315–319.

    Article  CAS  PubMed  Google Scholar 

  • Dammann R, Schagdarsurengin U, Strunnikova M, Rastetter M, Seidel C, Liu L et al. (2003). Epigenetic inactivation of the Ras-association domain family 1 (RASSF1A) gene and its function in human carcinogenesis. Histol Histopathol 18: 665–677.

    CAS  PubMed  Google Scholar 

  • Donehower LA, Harvey M, Slagle BL, McArthur MJ, Montgomery Jr CA, Butel JS et al. (1992). Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356: 215–221.

    Article  CAS  PubMed  Google Scholar 

  • Donninger H, Vos MD, Clark GJ . (2007). The RASSF1A tumor suppressor. J Cell Sci 120: 3163–3172.

    Article  CAS  PubMed  Google Scholar 

  • Duensing A, Duensing S . (2005). Guilt by association? p53 and the development of aneuploidy in cancer. Biochem Biophys Res Commun 331: 694–700.

    Article  CAS  PubMed  Google Scholar 

  • Foley CJ, Freedman H, Choo SL, Onyskiw C, Fu NY, Yu VC et al. (2008). Dynamics of RASSF1A/MOAP-1 association with death receptors. Mol Cell Biol 28: 4520–4535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujiwara T, Bandi M, Nitta M, Ivanova EV, Bronson RT, Pellman D . (2005). Cytokinesis failure generating tetraploids promotes tumorigenesis in p53-null cells. Nature 437: 1043–1047.

    Article  CAS  PubMed  Google Scholar 

  • Fukasawa K, Wiener F, Vande Woude GF, Mai S . (1997). Genomic instability and apoptosis are frequent in p53 deficient young mice. Oncogene 15: 1295–1302.

    Article  CAS  PubMed  Google Scholar 

  • Galipeau PC, Cowan DS, Sanchez CA, Barrett MT, Emond MJ, Levine DS et al. (1996). 17p (p53) allelic losses, 4N (G2/tetraploid) populations, and progression to aneuploidy in Barrett's esophagus. Proc Natl Acad Sci USA 93: 7081–7084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ganem NJ, Storchova Z, Pellman D . (2007). Tetraploidy, aneuploidy and cancer. Curr Opin Genet Dev 17: 157–162.

    Article  CAS  PubMed  Google Scholar 

  • Giaretti W . (1994). A model of DNA aneuploidization and evolution in colorectal cancer. Lab Invest 71: 904–910.

    CAS  PubMed  Google Scholar 

  • Giono LE, Manfredi JJ . (2006). The p53 tumor suppressor participates in multiple cell cycle checkpoints. J Cell Physiol 209: 13–20.

    Article  CAS  PubMed  Google Scholar 

  • Guo C, Tommasi S, Liu L, Yee JK, Dammann R, Pfeifer GP . (2007). RASSF1A is part of a complex similar to the Drosophila Hippo/Salvador/Lats tumor-suppressor network. Curr Biol 17: 700–705.

    Article  CAS  PubMed  Google Scholar 

  • Holland AJ, Cleveland DW . (2009). Boveri revisited: chromosomal instability, aneuploidy and tumorigenesis. Nat Rev Mol Cell Biol 10: 478–487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacks T, Remington L, Williams BO, Schmitt EM, Halachmi S, Bronson RT et al. (1994). Tumor spectrum analysis in p53-mutant mice. Curr Biol 4: 1–7.

    Article  CAS  PubMed  Google Scholar 

  • Lanni JS, Jacks T . (1998). Characterization of the p53-dependent postmitotic checkpoint following spindle disruption. Mol Cell Biol 18: 1055–1064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu L, Tommasi S, Lee DH, Dammann R, Pfeifer GP . (2003). Control of microtubule stability by the RASSF1A tumor suppressor. Oncogene 22: 8125–8136.

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Vo A, McKeehan WL . (2005). Specificity of the methylation-suppressed A isoform of candidate tumor suppressor RASSF1 for microtubule hyperstabilization is determined by cell death inducer C19ORF5. Cancer Res 65: 1830–1838.

    Article  CAS  PubMed  Google Scholar 

  • Livingstone LR, White A, Sprouse J, Livanos E, Jacks T, Tlsty TD . (1992). Altered cell cycle arrest and gene amplification potential accompany loss of wild-type p53. Cell 70: 923–935.

    Article  CAS  PubMed  Google Scholar 

  • Lobrich M, Jeggo PA . (2007). The impact of a negligent G2/M checkpoint on genomic instability and cancer induction. Nat Rev Cancer 7: 861–869.

    Article  PubMed  Google Scholar 

  • Matallanas D, Romano D, Yee K, Meissl K, Kucerova L, Piazzolla D et al. (2007). RASSF1A elicits apoptosis through an MST2 pathway directing proapoptotic transcription by the p73 tumor suppressor protein. Mol Cell 27: 962–975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Praskova M, Khoklatchev A, Ortiz-Vega S, Avruch J . (2004). Regulation of the MST1 kinase by autophosphorylation, by the growth inhibitory proteins, RASSF1 and NORE1, and by Ras. Biochem J 381: 453–462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Purdie CA, Harrison DJ, Peter A, Dobbie L, White S, Howie SE et al. (1994). Tumour incidence, spectrum and ploidy in mice with a large deletion in the p53 gene. Oncogene 9: 603–609.

    CAS  PubMed  Google Scholar 

  • Rabizadeh S, Xavier RJ, Ishiguro K, Bernabeortiz J, Lopez-Ilasaca M, Khokhlatchev A et al. (2004). The scaffold protein CNK1 interacts with the tumor suppressor RASSF1A and augments RASSF1A-induced cell death. J Biol Chem 279: 29247–29254.

    Article  CAS  PubMed  Google Scholar 

  • Richter AM, Pfeifer GP, Dammann RH . (2009). The RASSF proteins in cancer; from epigenetic silencing to functional characterization. Biochim Biophys Acta 1796: 114–128.

    CAS  PubMed  Google Scholar 

  • Segers P, Haesen S, Amy JJ, De Sutter P, Van Dam P, Kirsch-Volders M . (1994). Detection of premalignant stages in cervical smears with a biotinylated probe for chromosome 1. Cancer Genet Cytogenet 75: 120–129.

    Article  CAS  PubMed  Google Scholar 

  • Senovilla L, Vitale I, Galluzzi L, Vivet S, Joza N, Younes AB et al. (2009). p53 represses the polyploidization of primary mammary epithelial cells by activating apoptosis. Cell Cycle 8: 1380–1385.

    Article  CAS  PubMed  Google Scholar 

  • Shi Q, King RW . (2005). Chromosome nondisjunction yields tetraploid rather than aneuploid cells in human cell lines. Nature 437: 1038–1042.

    Article  CAS  PubMed  Google Scholar 

  • Shivakumar L, Minna J, Sakamaki T, Pestell R, White MA . (2002). The RASSF1A tumor suppressor blocks cell cycle progression and inhibits cyclin D1 accumulation. Mol Cell Biol 22: 4309–4318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song MS, Chang JS, Song SJ, Yang TH, Lee H, Lim DS . (2005). The centrosomal protein RAS association domain family protein 1A (RASSF1A)-binding protein 1 regulates mitotic progression by recruiting RASSF1A to spindle poles. J Biol Chem 280: 3920–3927.

    Article  CAS  PubMed  Google Scholar 

  • Song MS, Song SJ, Ayad NG, Chang JS, Lee JH, Hong HK et al. (2004). The tumour suppressor RASSF1A regulates mitosis by inhibiting the APC-Cdc20 complex. Nat Cell Biol 6: 129–137.

    Article  CAS  PubMed  Google Scholar 

  • Storchova Z, Kuffer C . (2008). The consequences of tetraploidy and aneuploidy. J Cell Sci 121: 3859–3866.

    Article  CAS  PubMed  Google Scholar 

  • Storchova Z, Pellman D . (2004). From polyploidy to aneuploidy, genome instability and cancer. Nat Rev Mol Cell Biol 5: 45–54.

    Article  CAS  PubMed  Google Scholar 

  • Tommasi S, Dammann R, Zhang Z, Wang Y, Liu L, Tsark WM et al. (2005). Tumor susceptibility of Rassf1a knockout mice. Cancer Res 65: 92–98.

    CAS  PubMed  Google Scholar 

  • van der Weyden L, Adams DJ . (2007). The Ras-association domain family (RASSF) members and their role in human tumourigenesis. Biochim Biophys Acta 1776: 58–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  • van der Weyden L, Tachibana KK, Gonzalez MA, Adams DJ, Ng BL, Petty R et al. (2005). The RASSF1A isoform of RASSF1 promotes microtubule stability and suppresses tumorigenesis. Mol Cell Biol 25: 8356–8367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verdoodt B, Castelain P, Bourgain C, Kirsch-Volders M . (1994). Aneuploidy for chromosome 1 and overall DNA content in benign and malignant breast disease. Cancer Genet Cytogenet 78: 53–63.

    Article  CAS  PubMed  Google Scholar 

  • Vogel C, Kienitz A, Hofmann I, Muller R, Bastians H . (2004). Crosstalk of the mitotic spindle assembly checkpoint with p53 to prevent polyploidy. Oncogene 23: 6845–6853.

    Article  CAS  PubMed  Google Scholar 

  • Vos MD, Martinez A, Elam C, Dallol A, Taylor BJ, Latif F et al. (2004). A role for the RASSF1A tumor suppressor in the regulation of tubulin polymerization and genomic stability. Cancer Res 64: 4244–4250.

    Article  CAS  PubMed  Google Scholar 

  • Vos MD, Martinez A, Ellis CA, Vallecorsa T, Clark GJ . (2003). Identification and validation of oncogenes in liver cancer using an integrative oncogenomic approach. J Biol Chem 278: 21938–21943.

    Article  CAS  PubMed  Google Scholar 

  • Zender L, Spector MS, Xue W, Flemming P, Cordon-Cardo C, Silke J et al. (2006). Identification and validation of oncogenes in liver cancer using an integrative oncogenomic approach. Cell 125: 1253–1267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou D, Conrad C, Xia F, Park JS, Payer B, Yin Y et al. (2009). Mst1 and Mst2 maintain hepatocyte quiescence and suppress hepatocellular carcinoma development through inactivation of the Yap1 oncogene. Cancer Cell 16: 425–438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Donna Isbell, Stefanie Wright-Golightly and Armando Amaya for mouse colony management; Lucy Brown and Claudio Spalla for FACS analysis; Dr Marilyn Slovak, Dr Joyce Collins and Victoria Bedell for cytogenetics on mouse cell lines and tumor PET sections. This work was supported by a grant from the University of California Tobacco related Disease Research Program (TRDRP grant 17RT-0116 to GPP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Tommasi.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tommasi, S., Besaratinia, A., Wilczynski, S. et al. Loss of Rassf1a enhances p53-mediated tumor predisposition and accelerates progression to aneuploidy. Oncogene 30, 690–700 (2011). https://doi.org/10.1038/onc.2010.440

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.440

Keywords

This article is cited by

Search

Quick links