Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Preneoplastic changes persist after IGF-IR downregulation and tumor regression

Abstract

Despite our incomplete understanding of the function of the type I insulin-like growth factor receptor (IGF-IR) in tumorigenesis, IGF-IR targeting agents have entered clinical trials for the treatment of human cancers. Previously, we have shown that downregulation of IGF-IR transgene in mammary tumors in MTB-IGFIR transengic mice results in tumor regression in a majority of the mice and most of these mice do not develop recurrent mammary tumors. In this study, we examined mammary tissue of mice that did not develop recurrent tumors. Areas of tumor regression were visible macroscopically and microscopically these lesions contained cell debris, individual cells, lipofuscin and doxycycline crystals. Three of the 12 mice also presented with considerable lobuloalveolar development. The re-expression of the IGF-IR transgene in mammary tissue with stably regressed tumors resulted in the rapid re-emergence of mammary tumors, some of which seemed to originate from the regressed mammary lesions. Thus, despite stable tumor regression after IGF-IR downregulation, mammary tissue contained preneoplastic lesions and tumors rapidly re-appear upon re-overexpression of IGF-IR transgene. Therefore, IGF-IR-targeting agents may be effective at regressing mammary tumors expressing IGF-IR, but these agents will not completely eradicate all tumor cells or restore the mammary stromal environment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Arteaga CL, Kitten LJ, Coronado EB, Jacobs S, Kull Jr FC, Allred DC et al. (1989). Blockade of the type I somatomedin receptor inhibits growth of human breast cancer cells in athymic mice. J Clin Invest 84: 1418–1423.

    Article  CAS  PubMed  Google Scholar 

  • Arteaga CL, Osborne CK . (1989). Growth inhibition of human breast cancer cells in vitro with an antibody against the type I somatomedin receptor. Cancer Res 49: 6237–6241.

    CAS  PubMed  Google Scholar 

  • Bahri S, Chen JH, Mehta RS, Carpenter PM, Nie K, Kwon SY et al. (2009). Residual breast cancer diagnosed by MRI in patients receiving neoadjuvant chemotherapy with and without bevacizumab. Ann Surg Oncol 16: 1619–1628.

    Article  PubMed  Google Scholar 

  • Baserga R, Peruzzi F, Reiss K . (2003). The IGF-1 receptor in cancer biology. Int J Cancer 107: 873–877.

    Article  CAS  PubMed  Google Scholar 

  • Bates P, Fisher R, Ward A, Richardson L, Hill DJ, Graham CF . (1995). Mammary cancer in transgenic mice expressing insulin-like growth factor II (IGF-II). Br J Cancer 72: 1189–1193.

    Article  CAS  PubMed  Google Scholar 

  • Bohula EA, Salisbury AJ, Sohail M, Playford MP, Riedemann J, Southern EM et al. (2003). The efficacy of small interfering RNAs targeted to the type 1 insulin-like growth factor receptor (IGF1R) is influenced by secondary structure in the IGF1R transcript. J Biol Chem 278: 15991–15997.

    Article  CAS  PubMed  Google Scholar 

  • Bol DK, Kiguchi K, Gimenez-Conti I, Rupp T, DiGiovanni J . (1997). Overexpression of insulin-like growth factor-1 induces hyperplasia, dermal abnormalities, and spontaneous tumor formation in transgenic mice. Oncogene 14: 1725–1734.

    Article  CAS  PubMed  Google Scholar 

  • Carboni JM, Lee AV, Hadsell DL, Rowley BR, Lee FY, Bol DK et al. (2005). Tumor development by transgenic expression of a constitutively active insulin-like growth factor I receptor. Cancer Res 65: 3781–3787.

    Article  CAS  PubMed  Google Scholar 

  • Chernicky CL, Tan H, Yi L, Loret Jr dM, Ilan J . (2002). Treatment of murine breast cancer cells with antisense RNA to the type I insulin-like growth factor receptor decreases the level of plasminogen activator transcripts, inhibits cell growth in vitro, and reduces tumorigenesis in vivo. Mol Pathol 55: 102–109.

    Article  CAS  PubMed  Google Scholar 

  • Denys H, Braems G, Lambein K, Pauwels P, Hendrix A, De BA et al. (2009). The extracellular matrix regulates cancer progression and therapy response: implications for prognosis and treatment. Curr Pharm Des 15: 1373–1384.

    Article  CAS  PubMed  Google Scholar 

  • DiGiovanni J, Kiguchi K, Frijhoff A, Wilker E, Bol DK, Beltran L et al. (2000). Deregulated expression of insulin-like growth factor 1 in prostate epithelium leads to neoplasia in transgenic mice. Proc Natl Acad Sci USA 97: 3455–3460.

    Article  CAS  PubMed  Google Scholar 

  • Ghajar CM, Bissell MJ . (2008). Extracellular matrix control of mammary gland morphogenesis and tumorigenesis: insights from imaging. Histochem Cell Biol 130: 1105–1118.

    Article  CAS  PubMed  Google Scholar 

  • Gualberto A, Pollak M . (2009). Emerging role of insulin-like growth factor receptor inhibitors in oncology: early clinical trial results and future directions. Oncogene 28: 3009–3021.

    Article  CAS  PubMed  Google Scholar 

  • Hadsell DL, Murphy KL, Bonnette SG, Reece N, Laucirica R, Rosen JM . (2000). Cooperative interaction between mutant p53 and des(1-3)IGF-I accelerates mammary tumorigenesis. Oncogene 19: 889–898.

    Article  CAS  PubMed  Google Scholar 

  • Jain M, Arvanitis C, Chu K, Dewey W, Leonhardt E, Trinh M et al. (2002). Sustained loss of a neoplastic phenotype by brief inactivation of MYC. Science 297: 102–104.

    Article  CAS  PubMed  Google Scholar 

  • Jones RA, Campbell CI, Gunther EJ, Chodosh LA, Petrik JJ, Khokha R et al. (2007). Transgenic overexpression of IGF-IR disrupts mammary ductal morphogenesis and induces tumor formation. Oncogene 26: 1636–1644.

    Article  CAS  PubMed  Google Scholar 

  • Jones RA, Campbell CI, Wood GA, Petrik JJ, Moorehead RA . (2009). Reversibility and recurrence of IGF-IR-induced mammary tumors. Oncogene 28: 2152–2162.

    Article  CAS  PubMed  Google Scholar 

  • Kaplan-Lefko PJ, Sutherland BW, Evangelou AI, Hadsell DL, Barrios RJ, Foster BA et al. (2008). Enforced epithelial expression of IGF-1 causes hyperplastic prostate growth while negative selection is requisite for spontaneous metastogenesis. Oncogene 27: 2868–2876.

    Article  CAS  PubMed  Google Scholar 

  • LeRoith D, Roberts Jr CT . (2003). The insulin-like growth factor system and cancer. Cancer Lett 195: 127–137.

    Article  CAS  PubMed  Google Scholar 

  • Linnerth NM, Siwicky MD, Campbell CI, Watson KL, Petrik JJ, Whitsett JA et al. (2009). Type I insulin-like growth factor receptor induces pulmonary tumorigenesis. Neoplasia 11: 672–682.

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Zi X, Zhao Y, Mascarenhas D, Pollak M . (2001). Insulin-like growth factor-I receptor signaling and resistance to trastuzumab (Herceptin). J Natl Cancer Inst 93: 1852–1857.

    Article  CAS  PubMed  Google Scholar 

  • Miranda MB, Duan R, Thomas SM, Grandis JR, Redner RL, Jones JE et al. (2008). Gefitinib potentiates myeloid cell differentiation by ATRA. Leukemia 22: 1624–1627.

    Article  CAS  PubMed  Google Scholar 

  • Moorehead RA, Sanchez OH, Baldwin RM, Khokha R . (2003). Transgenic overexpression of IGF-II induces spontaneous lung tumors: a model for human lung adenocarcinoma. Oncogene 22: 853–857.

    Article  CAS  PubMed  Google Scholar 

  • Morris GJ, Robinson PA, Lo S, Samuel TA, Sheikh AA, Jordan III WE et al. (2010). Residual disease after neoadjuvant chemotherapy for breast cancer. Semin Oncol 37: 1–10.

    Article  PubMed  Google Scholar 

  • Nahta R, Esteva FJ . (2006). Herceptin: mechanisms of action and resistance. Cancer Lett 232: 123–138.

    Article  CAS  PubMed  Google Scholar 

  • Nahta R, Yuan LX, Zhang B, Kobayashi R, Esteva FJ . (2005). Insulin-like growth factor-I receptor/human epidermal growth factor receptor 2 heterodimerization contributes to trastuzumab resistance of breast cancer cells. Cancer Res 65: 11118–11128.

    Article  CAS  PubMed  Google Scholar 

  • Peintinger F, Kuerer HM, McGuire SE, Bassett R, Pusztai L, Symmans WF . (2008). Residual specimen cellularity after neoadjuvant chemotherapy for breast cancer. Br J Surg 95: 433–437.

    Article  CAS  PubMed  Google Scholar 

  • Pravtcheva DD, Wise TL . (1998). Metastasizing mammary carcinomas in H19 enhancers-Igf2 transgenic mice. J Exp Zool 281: 43–57.

    Article  CAS  PubMed  Google Scholar 

  • Pure E . (2009). The road to integrative cancer therapies: emergence of a tumor-associated fibroblast protease as a potential therapeutic target in cancer. Expert Opin Ther Targets 13: 967–973.

    Article  CAS  PubMed  Google Scholar 

  • Sachdev D, Yee D . (2001). The IGF system and breast cancer. Endocr Relat Cancer 8: 197–209.

    Article  CAS  Google Scholar 

  • Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A et al. (2001). Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 344: 783–792.

    Article  CAS  Google Scholar 

  • Surmacz E . (2000). Function of the IGF-I receptor in breast cancer. J Mam Gland Biol Neoplasia 5: 95–105.

    Article  CAS  Google Scholar 

  • Surmacz E . (2003). Growth factor receptors as therapeutic targets: strategies to inhibit the insulin-like growth factor I receptor. Oncogene 22: 6589–6597.

    Article  CAS  PubMed  Google Scholar 

  • Wilker E, Lu J, Rho O, Carbajal S, Beltran L, DiGiovanni J . (2005). Role of PI3K/Akt signaling in insulin-like growth factor-1 (IGF-1) skin tumor promotion. Mol Carcinog 44: 137–145.

    Article  CAS  PubMed  Google Scholar 

  • Wise TL, Pravtcheva DD . (2006). Delayed onset of Igf2-induced mammary tumors in Igf2r transgenic mice. Cancer Res 66: 1327–1336.

    Article  CAS  PubMed  Google Scholar 

  • Zhang D, LaFortune TA, Krishnamurthy S, Esteva FJ, Cristofanilli M, Liu P et al. (2009). Epidermal growth factor receptor tyrosine kinase inhibitor reverses mesenchymal to epithelial phenotype and inhibits metastasis in inflammatory breast cancer. Clin Cancer Res 15: 6639–6648.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded by a Cancer Research Society grant and a Canadian Institutes of Health Research grant to RAM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R A Moorehead.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jones, R., Petrik, J. & Moorehead, R. Preneoplastic changes persist after IGF-IR downregulation and tumor regression. Oncogene 29, 4779–4786 (2010). https://doi.org/10.1038/onc.2010.231

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.231

Keywords

This article is cited by

Search

Quick links