Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

Loss of poly(ADP-ribose) polymerase-2 leads to rapid development of spontaneous T-cell lymphomas in p53-deficient mice

Abstract

Poly(ADP-ribose) polymerase-2 (Parp-2) belongs to a family of enzymes that catalyse poly(ADP-ribosyl)ation of proteins. Parp-2 deficiency in mice (Parp-2−/−) results in reduced thymic cellularity associated with increased apoptosis in thymocytes, defining Parp-2 as an important mediator of T-cell survival during thymopoiesis. To determine whether there is a link between Parp-2 and the p53 DNA-damage-dependent apoptotic response, we have generated Parp-2/p53-double-null mutant mice. We found that p53−/− backgrounds completely restored the survival and development of Parp-2−/− thymocytes. However, Parp-2-deficient thymocytes accumulated high levels of DNA double-strand breaks (DSB), independently of the p53 status, in line with a function of Parp-2 as a caretaker promoting genomic stability during thymocytes development. Although Parp-2−/− mice do not have spontaneous tumours, Parp-2 deficiency accelerated spontaneous tumour development in p53-null mice, mainly T-cell lymphomas. These data suggest a synergistic interaction between Parp-2 and p53 in tumour suppression through the role of Parp-2 in DNA-damage response and genome integrity surveillance, and point to the potential importance of examining human tumours for the status of both genes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Bai P, Houten SM, Huber A, Schreiber V, Watanabe M, Kiss B et al. (2007). Poly(ADP-ribose) polymerase-2 controls adipocyte differentiation and adipose tissue function through the regulation of the activity of the retinoid X receptor/peroxisome proliferator-activated receptor-gamma heterodimer. J Biol Chem 282: 37738–37746.

    Article  CAS  Google Scholar 

  • Bassing CH, Ranganath S, Murphy M, Savic V, Gleason M, Alt FW . (2008). Aberrant V(D)J recombination is not required for rapid development of H2ax/p53-deficient thymic lymphomas with clonal translocations. Blood 111: 2163–2169.

    Article  CAS  Google Scholar 

  • Beneke R, Möröy T . (2001). Inhibition of poly(ADP-ribose) polymerase activity accelerates T-cell lymphomagenesis in p53 deficient mice. Oncogene 20: 8136–8141.

    Article  CAS  Google Scholar 

  • Bryant HE, Schultz N, Thomas HD, Parker KM, Flower D, Lopez E et al. (2005). Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434: 913–917.

    Article  CAS  Google Scholar 

  • Chen HT, Bhandoola A, Difilippantonio MJ, Zhu J, Brown MJ, Tai X et al. (2000). Response to RAG-mediated VDJ cleavage by NBS1 and gamma-H2AX. Science 290: 1962–1965.

    Article  CAS  Google Scholar 

  • Conde C, Mark M, Oliver FJ, Huber A, de Murcia G, Menissier-de Murcia J . (2001). Loss of poly(ADP-ribose) polymerase-1 causes increased tumour latency in p53-deficient mice. EMBO J 20: 3535–3543.

    Article  CAS  Google Scholar 

  • Dantzer F, Mark M, Quenet D, Scherthan H, Huber A, Liebe B et al. (2006). Poly(ADP-ribose) polymerase-2 contributes to the fidelity of male meiosis I and spermiogenesis. Proc Natl Acad Sci USA 103: 14854–14859.

    Article  CAS  Google Scholar 

  • Difilippantonio MJ, Zhu J, Chen HT, Meffre E, Nussenzweig MC, Max EE et al. (2000). DNA repair protein Ku80 suppresses chromosomal aberrations and malignant transformation. Nature 404: 510–514.

    Article  CAS  Google Scholar 

  • Farmer H, McCabe N, Lord CJ, Tutt AN, Johnson DA, Richardson TB et al. (2005). Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434: 917–921.

    Article  CAS  Google Scholar 

  • Fong PC, Boss DS, Yap TA, Tutt A, Wu P, Mergui-Roelvink M et al. (2009). Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med 361: 123–134.

    Article  CAS  Google Scholar 

  • Frank KM, Sharpless NE, Gao Y, Sekiguchi JM, Ferguson DO, Zhu C et al. (2000). DNA ligase IV deficiency in mice leads to defective neurogenesis and embryonic lethality via the p53 pathway. Mol Cell 5: 993–1002.

    Article  CAS  Google Scholar 

  • Gao Y, Ferguson DO, Xie W, Manis JP, Sekiguchi J, Frank KM et al. (2000). Interplay of p53 and DNA-repair protein XRCC4 in tumorigenesis, genomic stability and development. Nature 404: 897–900.

    Article  CAS  Google Scholar 

  • Hakem R . (2008). DNA-damage repair; the good, the bad, and the ugly. EMBO J 27: 589–605.

    Article  CAS  Google Scholar 

  • Hawwari A, Bock C, Krangel MS . (2005). Regulation of T cell receptor alpha gene assembly by a complex hierarchy of germline Jalpha promoters. Nat Immunol 6: 481–489.

    Article  CAS  Google Scholar 

  • Huber A, Bai P, de Murcia JM, de Murcia G . (2004). PARP-1, PARP-2 and ATM in the DNA damage response: functional synergy in mouse development. DNA Repair (Amst) 3: 1103–1108.

    Article  CAS  Google Scholar 

  • Lee GS, Neiditch MB, Salus SS, Roth DB . (2004). RAG proteins shepherd double-strand breaks to a specific pathway, suppressing error-prone repair, but RAG nicking initiates homologous recombination. Cell 117: 171–184.

    Article  CAS  Google Scholar 

  • Mak TW, Hakem A, McPherson JP, Shehabeldin A, Zablocki E, Migon E et al. (2000). Brcal required for T cell lineage development but not TCR loci rearrangement. Nat Immunol 1: 77–82.

    Article  CAS  Google Scholar 

  • Menissier dM, Ricoul M, Tartier L, Niedergang C, Huber A, Dantzer F et al. (2003). Functional interaction between PARP-1 and PARP-2 in chromosome stability and embryonic development in mouse. EMBO J 22: 2255–2263.

    Article  Google Scholar 

  • Paques F, Haber JE . (1999). Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 63: 349–404.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Petrie HT, Livak F, Schatz DG, Strasser A, Crispe IN, Shortman K . (1993). Multiple rearrangements in T cell receptor alpha chain genes maximize the production of useful thymocytes. J Exp Med 178: 615–622.

    Article  CAS  Google Scholar 

  • Riley T, Sontag E, Chen P, Levine A . (2008). Transcriptional control of human p53-regulated genes. Nat Rev Mol Cell Biol 9: 402–412.

    Article  CAS  Google Scholar 

  • Robert I, Dantzer F, Reina-San-Martin B . (2009). Parp1 facilitates alternative NHEJ, whereas Parp2 suppresses IgH/c-myc translocations during immunoglobulin class switch recombination. J Exp Med 206: 1047–1056.

    Article  CAS  Google Scholar 

  • Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM . (1998). DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 273: 5858–5868.

    Article  CAS  Google Scholar 

  • Rooney S, Sekiguchi J, Whitlow S, Eckersdorff M, Manis JP, Lee C et al. (2004). Artemis and p53 cooperate to suppress oncogenic N-myc amplification in progenitor B cells. Proc Natl Acad Sci USA 101: 2410–2415.

    Article  CAS  Google Scholar 

  • Schreiber V, Dantzer F, Ame JC, de Murcia G . (2006). Poly(ADP-ribose): novel functions for an old molecule. Nat Rev Mol Cell Biol 7: 517–528.

    Article  CAS  Google Scholar 

  • Shiloh Y . (2003). ATM and related protein kinases: safeguarding genome integrity. Nat Rev Cancer 3: 155–168.

    Article  CAS  Google Scholar 

  • Sonoda E, Sasaki MS, Buerstedde JM, Bezzubova O, Shinohara A, Ogawa H et al. (1998). Rad51-deficient vertebrate cells accumulate chromosomal breaks prior to cell death. EMBO J 17: 598–608.

    Article  CAS  Google Scholar 

  • Tentori L, Muzi A, Dorio AS, Bultrini S, Mazzon E, Lacal PM et al. (2008). Stable depletion of poly (ADP-ribose) polymerase-1 reduces in vivo melanoma growth and increases chemosensitivity. Eur J Cancer 44: 1302–1314.

    Article  CAS  Google Scholar 

  • Tong WM, Cortes U, Hande MP, Ohgaki H, Cavalli LR, Lansdorp PM et al. (2002). Synergistic role of Ku80 and poly(ADP-ribose) polymerase in suppressing chromosomal aberrations and liver cancer formation. Cancer Res 62: 6990–6996.

    CAS  PubMed  Google Scholar 

  • Tong WM, Hande MP, Lansdorp PM, Wang ZQ . (2001). DNA strand break-sensing molecule poly(ADP-ribose) polymerase cooperates with p53 in telomere function, chromosome stability, and tumor suppression. Mol Cell Biol 21: 4046–4054.

    Article  CAS  Google Scholar 

  • Tong WM, Ohgaki H, Huang H, Granier C, Kleihues P, Wang ZQ . (2003). Null mutation of DNA strand break-binding molecule poly(ADP-ribose) polymerase causes medulloblastomas in p53(−/−) mice. Am J Pathol 162: 343–352.

    Article  CAS  Google Scholar 

  • Tong WM, Yang YG, Cao WH, Galendo D, Frappart L, Shen Y et al. (2007). Poly(ADP-ribose) polymerase-1 plays a role in suppressing mammary tumorigenesis in mice. Oncogene 26: 3857–3867.

    Article  CAS  Google Scholar 

  • von Boehmer H, Aifantis I, Feinberg J, Lechner O, Saint-Ruf C, Walter U et al. (1999). Pleiotropic changes controlled by the pre-T-cell receptor. Curr Opin Immunol 11: 135–142.

    Article  CAS  Google Scholar 

  • von Boehmer H, Fehling HJ . (1997). Structure and function of the pre-T cell receptor. Annu Rev Immunol 15: 433–452.

    Article  CAS  Google Scholar 

  • Werlen G, Hausmann B, Naeher D, Palmer E . (2003). Signaling life and death in the thymus: timing is everything. Science 299: 1859–1863.

    Article  CAS  Google Scholar 

  • Wang Z, Stingl L, Morrison C, Jantsch M, Los M, Schulze-Osthoff K et al. (1997). PARP is important for genomic stability bus dispensable in apoptosis. Genes Dev 11: 2347–2358.

    Article  CAS  Google Scholar 

  • Xu M, Yu Q, Subrahmanyam R, Difilippantonio MJ, Ried T, Sen JM . (2008). Beta-catenin expression results in p53-independent DNA damage and oncogene-induced senescence in prelymphomagenic thymocytes in vivo. Mol Cell Biol 28: 1713–1723.

    Article  CAS  Google Scholar 

  • Yelamos J, Monreal Y, Saenz L, Aguado E, Schreiber V, Mota R et al. (2006). PARP-2 deficiency affects the survival of CD4+CD8+ double-positive thymocytes. EMBO J 25: 4350–4360.

    Article  CAS  Google Scholar 

  • Yelamos J, Schreiber V, Dantzer F . (2008). Toward specific functions of poly(ADP-ribose) polymerase-2. Trends Mol Med 14: 169–178.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Katherine Papageorgiou for assistance with handling the mice and Sergi Mojal for statistical analysis support. This work was supported by Spanish Ministerio de Ciencia e Innovación (Grant SAF2008-01572 to JY); Generalitat de Catalunya (Grant 2009/SGR/524 to JY); Instituto de Salud Carlos III (Grant PI081150 to PA); Fundación Séneca (Grant 08643/PI/08 to PA); and funds from Centre National de la Recherche Scientifique, Association pour la Recherche contre le Cancer, Electricité de France, Comité du Haut-Rhin de la Ligue Nationale Contre le Cancer and Commissariat à l’Energie Atomique (VS, FD). LN is supported by the Spanish Ministerio de Ciencia e Innovación and AB-M is supported by Instituto de Salud Carlos III (Madrid, Spain) and the FFIS (Murcia, Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Yelamos.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nicolás, L., Martínez, C., Baró, C. et al. Loss of poly(ADP-ribose) polymerase-2 leads to rapid development of spontaneous T-cell lymphomas in p53-deficient mice. Oncogene 29, 2877–2883 (2010). https://doi.org/10.1038/onc.2010.11

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.11

Keywords

This article is cited by

Search

Quick links