Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The F-box protein FBXO45 promotes the proteasome-dependent degradation of p73

Abstract

The transcription factor p73, a member of the p53 family, mediates cell-cycle arrest and apoptosis in response to DNA damage-induced cellular stress, acting thus as a proapoptotic gene. Similar to p53, p73 activity is regulated by post-translational modification, including phosphorylation, acetylation and ubiquitylation. In C. elegans, the F-box protein FSN-1 controls germline apoptosis by regulating CEP-1, the single ancestral p53 family member. Here we report that FBXO45, the human ortholog of FSN-1, binds specifically to p73 triggering its proteasome-dependent degradation. Importantly, SCFFBXO45 ubiquitylates p73 both in vivo and in vitro. Moreover, siRNA-mediated depletion of FBXO45 stabilizes p73 and concomitantly induces cell death in a p53-independent manner. All together, these results show that the orphan F-box protein FBXO45 regulates the stability of p73, highlighting a conserved pathway evolved from nematode to human by which the p53 members are regulated by an SCF-dependent mechanism.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Abida WM, Nikolaev A, Zhao W, Zhang W, Gu W. (2007). FBXO11 promotes the Neddylation of p53 and inhibits its transcriptional activity. J Biol Chem 282: 1797–1804.

    CAS  PubMed  Google Scholar 

  • Agami R, Blandino G, Oren M, Shaul Y . (1999). Interaction of c-Abl and p73alpha and their collaboration to induce apoptosis. Nature 399: 809–813.

    CAS  PubMed  Google Scholar 

  • Bergamaschi D, Gasco M, Hiller L, Sullivan A, Syed N, Trigiante G et al. (2003). p53 polymorphism influences response in cancer chemotherapy via modulation of p73-dependent apoptosis. Cancer Cell 3: 387–402.

    Article  CAS  PubMed  Google Scholar 

  • Bernassola F, Karin M, Ciechanover A, Melino G. (2008). The HECT family of E3 ubiquitin ligases: multiple players in cancer development. Cancer Cell 14: 10–21.

    Article  CAS  PubMed  Google Scholar 

  • Bernassola F, Salomoni P, Oberst A, Di Como CJ, Pagano M, Melino G et al. (2004). Ubiquitin-dependent degradation of p73 is inhibited by PML. J Exp Med 199: 1545–1557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bloom J, Pagano M. . (2005). Experimental tests to definitively determine ubiquitylation of a substrate. Methods Enzymol 399: 249–266.

    Article  CAS  PubMed  Google Scholar 

  • Cardozo T, Pagano M . (2004). The SCF ubiquitin ligase: insights into a molecular machine. Nat Rev Mol Cell Biol 5: 739–751.

    Article  CAS  PubMed  Google Scholar 

  • Cenciarelli C, Chiaur DS, Guardavaccaro D, Parks W, Vidal M, Pagano M . (1999). Identification of a family of human F-box proteins. Curr Biol 9: 1177–1179.

    Article  CAS  PubMed  Google Scholar 

  • Chopin V, Toillon RA, Jouy N, Le Bourhis X . (2002). Sodium butyrate induces P53-independent, Fas-mediated apoptosis in MCF-7 human breast cancer cells. Br J Pharmacol 135: 79–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Laurenzi V, Costanzo A, Barcaroli D, Terrinoni A, Falco M, Annicchiarico-Petruzzelli M et al. (1998). Two new p73 splice variants, gamma and delta, with different transcriptional activity. J Exp Med 188: 1763–1768.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Laurenzi V, Raschella G, Barcaroli D, Annicchiarico-Petruzzelli M, Ranalli M, Catani MV et al. (2000). Induction of neuronal differentiation by p73 in a neuroblastoma cell line. J Biol Chem 275: 15226–15231.

    Article  CAS  PubMed  Google Scholar 

  • De Laurenzi VD, Catani MV, Terrinoni A, Corazzari M, Melino G, Costanzo A et al. (1999). Additional complexity in p73: induction by mitogens in lymphoid cells and identification of two new splicing variants epsilon and zeta. Cell Death Differ 6: 389–390.

    Article  CAS  PubMed  Google Scholar 

  • Derry WB, Putzke AP, Rothman JH . (2001). Caenorhabditis elegans p53: role in apoptosis, meiosis, and stress resistance. Science 294: 591–595.

    Article  CAS  PubMed  Google Scholar 

  • Donzelli M, Squatrito M, Ganoth D, Hershko A, Pagano M, Draetta GF . (2002). Dual mode of degradation of Cdc25 A phosphatase. EMBO J 21: 4875–4884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dorrello NV, Peschiaroli A, Guardavaccaro D, Colburn NH, Sherman NE, Pagano M . (2006). S6K1- and betaTRCP-mediated degradation of PDCD4 promotes protein translation and cell growth. Science 314: 467–471.

    Article  CAS  PubMed  Google Scholar 

  • Flores ER, Sengupta S, Miller JB, Newman JJ, Bronson R, Crowley D et al. (2005). Tumor predisposition in mice mutant for p63 and p73: evidence for broader tumor suppressor functions for the p53 family. Cancer Cell 7: 363–373.

    Article  CAS  PubMed  Google Scholar 

  • Frescas D, Pagano M . (2008). Deregulated proteolysis by the F-box proteins SKP2 and beta-TrCP: tipping the scales of cancer. Nat Rev Cancer 8: 438–449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaiddon C, Lokshin M, Gross I, Levasseur D, Taya Y, Loeffler JP et al. (2003). Cyclin-dependent kinases phosphorylate p73 at threonine 86 in a cell cycle-dependent manner and negatively regulate p73. J Biol Chem 278: 27421–27431.

    Article  CAS  PubMed  Google Scholar 

  • Gao MX, Liao EH, Yu B, Wang Y, Zhen M, Derry WB. (2008). The SCF FSN-1 ubiquitin ligase controls germline apoptosis through CEP-1/p53 in C. elegans. Cell Death Differ 15: 1054–1062.

    Article  CAS  PubMed  Google Scholar 

  • Gong JG, Costanzo A, Yang HQ, Melino G, Kaelin Jr WG., Levrero M et al. (1999). The tyrosine kinase c-Abl regulates p73 in apoptotic response to cisplatin-induced DNA damage. Nature 399: 806–809.

    Article  CAS  PubMed  Google Scholar 

  • Grob TJ, Novak U, Maisse C, Barcaroli D, Luthi AU, Pirnia F et al. (2001). Human delta Np73 regulates a dominant negative feedback loop for TAp73 and p53. Cell Death Differ 8: 1213–1223.

    Article  CAS  PubMed  Google Scholar 

  • Handeli S, Weintraub H . (1992). The ts41 mutation in Chinese hamster cells leads to successive S phases in the absence of intervening G2, M, and G1. Cell 71: 599–611.

    Article  CAS  PubMed  Google Scholar 

  • Hershko A. (2005). The ubiquitin system for protein degradation and some of its roles in the control of the cell-division cycle (Nobel lecture). Angew Chem Int Ed Engl 44: 5932–5943.

    Article  CAS  PubMed  Google Scholar 

  • Hori T, Osaka F, Chiba T, Miyamoto C, Okabayashi K, Shimbara N et al. (1999). Covalent modification of all members of human cullin family proteins by NEDD8. Oncogene 18: 6829–6834.

    Article  CAS  PubMed  Google Scholar 

  • Kaghad M, Bonnet H, Yang A, Creancier L, Biscan JC, Valent A et al. (1997). Monoallelically expressed gene related to p53 at 1p36, a region frequently deleted in neuroblastoma and other human cancers. Cell 90: 809–819.

    Article  CAS  PubMed  Google Scholar 

  • Kipreos ET, Pagano M . (2000). The F-box protein family. Genome Biol 1: REVIEWS3002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koida N, Ozaki T, Yamamoto H, Ono S, Koda T, Ando K et al. (2008). Inhibitory role of Plk1 in the regulation of p73-dependent apoptosis through physical interaction and phosphorylation. J Biol Chem 283: 8555–8563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levrero M, De Laurenzi V, Costanzo A, Gong J, Melino G, Wang JY . (1999). Structure, function and regulation of p63 and p73. Cell Death Differ 6: 1146–1153.

    Article  CAS  PubMed  Google Scholar 

  • Maisse C, Munarriz E, Barcaroli D, Melino G, De Laurenzi V . (2004). DNA damage induces the rapid and selective degradation of the DeltaNp73 isoform, allowing apoptosis to occur. Cell Death Differ 11: 685–687.

    Article  CAS  PubMed  Google Scholar 

  • Melino G. . (2003). p73, the ‘assistant’ guardian of the genome? Ann NY Acad Sci 1010: 9–15.

    Article  CAS  PubMed  Google Scholar 

  • Melino G, Bernassola F, Ranalli M, Yee K, Zong WX, Corazzari M et al. (2004). p73 Induces apoptosis via PUMA transactivation and Bax mitochondrial translocation. J Biol Chem 279: 8076–8083.

    Article  CAS  PubMed  Google Scholar 

  • Melino G, De Laurenzi V, Vousden KH. . (2002). p73: Friend or foe in tumorigenesis. Nat Rev Cancer 2: 605–615.

    Article  CAS  PubMed  Google Scholar 

  • Morimoto M, Nishida T, Nagayama Y, Yasuda H . (2003). Nedd8-modification of Cul1 is promoted by Roc1 as a Nedd8-E3 ligase and regulates its stability. Biochem Biophys Res Commun 301: 392–398.

    Article  CAS  PubMed  Google Scholar 

  • Nicoletti I, Migliorati G, Pagliacci MC, Grignani F, Riccardi C . (1991). A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J Immunol Methods 139: 271–279.

    Article  CAS  PubMed  Google Scholar 

  • Osaka F, Saeki M, Katayama S, Aida N, Toh EA, Kominami K et al. (2000). Covalent modifier NEDD8 is essential for SCF ubiquitin-ligase in fission yeast. EMBO J 19: 3475–3484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ou HD, Lohr F, Vogel V, Mantele W, Dotsch V . (2007). Structural evolution of C-terminal domains in the p53 family. EMBO J 26: 3463–3473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parry G, Estelle M . (2004). Regulation of cullin-based ubiquitin ligases by the Nedd8/RUB ubiquitin-like proteins. Semin Cell Dev Biol 15: 221–229.

    Article  CAS  PubMed  Google Scholar 

  • Perez-Losada J, Wu D, DelRosario R, Balmain A, Mao JH. (2005). p63 and p73 do not contribute to p53-mediated lymphoma suppressor activity in vivo. Oncogene 24: 5521–5524.

    Article  CAS  PubMed  Google Scholar 

  • Peschiaroli A, Dorrello NV, Guardavaccaro D, Venere M, Halazonetis T, Sherman NE et al. (2006). SCFbetaTrCP-mediated degradation of Claspin regulates recovery from the DNA replication checkpoint response. Mol Cell 23: 319–329.

    Article  CAS  PubMed  Google Scholar 

  • Petrenko O, Zaika A, Moll UM . (2003). deltaNp73 facilitates cell immortalization and cooperates with oncogenic Ras in cellular transformation in vivo. Mol Cell Biol 23: 5540–5555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petroski MD, Deshaies RJ. (2005). Function and regulation of cullin-RING ubiquitin ligases. Nat Rev Mol Cell Biol 6: 9–20.

    Article  CAS  PubMed  Google Scholar 

  • Ramadan S, Terrinoni A, Catani MV, Sayan AE, Knight RA, Mueller M et al. (2005). p73 induces apoptosis by different mechanisms. Biochem Biophys Res Commun 331: 713–717.

    Article  CAS  PubMed  Google Scholar 

  • Rossi M, De Laurenzi V, Munarriz E, Green DR, Liu YC, Vousden KH et al. (2005). The ubiquitin-protein ligase Itch regulates p73 stability. EMBO J 24: 836–848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saha A, Deshaies RJ . (2008). Multimodal activation of the ubiquitin ligase SCF by Nedd8 conjugation. Mol Cell 32: 21–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schumacher B, Hofmann K, Boulton S, Gartner A . (2001). The C. elegans homolog of the p53 tumor suppressor is required for DNA damage-induced apoptosis. Curr Biol 11: 1722–1727.

    Article  CAS  PubMed  Google Scholar 

  • Skowyra D, Craig KL, Tyers M, Elledge SJ, Harper JW. (1997). F-box proteins are receptors that recruit phosphorylated substrates to the SCF ubiquitin-ligase complex. Cell 91: 209–219.

    Article  CAS  PubMed  Google Scholar 

  • Soond SM, Barry SP, Melino G, Knight RA, Latchman DS, Stephanou A . (2008). p73-mediated transcriptional activity is negatively regulated by polo-like kinase 1. Cell Cycle 7: 1214–1223.

    Article  CAS  PubMed  Google Scholar 

  • Thomas JH . (2006). Adaptive evolution in two large families of ubiquitin-ligase adapters in nematodes and plants. Genome Res 16: 1017–1030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomasini R, Mak TW, Melino G . (2008a). The impact of p53 and p73 on aneuploidy and cancer. Trends Cell Biol 18: 244–252.

    Article  CAS  PubMed  Google Scholar 

  • Tomasini R, Tsuchihara K, Wilhelm M, Fujitani M, Rufini A, Cheung CC et al. (2008b). TAp73 knockout shows genomic instability with infertility and tumor suppressor functions. Genes Dev 22: 2677–2691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watson IR, Irwin MS . (2006). Ubiquitin and ubiquitin-like modifications of the p53 family. Neoplasia 8: 655–666.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winston JT, Koepp DM, Zhu C, Elledge SJ, Harper JW . (1999). A family of mammalian F-box proteins. Curr Biol 9: 1180–1182.

    Article  CAS  PubMed  Google Scholar 

  • Yang A, Walker N, Bronson R, Kaghad M, Oosterwegel M, Bonnin J et al. (2000). p73-deficient mice have neurological, pheromonal and inflammatory defects but lack spontaneous tumours. Nature 404: 99–103.

    Article  CAS  PubMed  Google Scholar 

  • Yuan ZM, Shioya H, Ishiko T, Sun X, Gu J, Huang YY et al. (1999). Nature 399: 814–817.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank V De Laurenzi for critically reading the manuscript. This study has been supported by the Medical Research Council, UK; grants from EU EPISTEM (LSHB-CT-019067), ‘Alleanza contro il Cancro’ (ACC12), MIUR/PRIN (RBIP06LCA9_0023), AIRC (2008-20105471), ISS ‘Program Italia-USA’ N526D5, Italian Human ProteomeNet RBRN07BMCT_007 and Telethon (GGPO4110) to GM; and grants from the National Institutes of Health (R01-GM57587, R37-CA76584 and R21-CA125173) and Multiple Myeloma Research Fundation to MP. Research described in this article was also supported in part by Philip Morris USA Inc. and Philip Morris International to GM. MP is an Investigator with the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G Melino.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peschiaroli, A., Scialpi, F., Bernassola, F. et al. The F-box protein FBXO45 promotes the proteasome-dependent degradation of p73. Oncogene 28, 3157–3166 (2009). https://doi.org/10.1038/onc.2009.177

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.177

Keywords

This article is cited by

Search

Quick links