Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Notch-dependent cell cycle arrest and apoptosis in mouse embryonic fibroblasts lacking Fbxw7

Abstract

The F-box protein Fbxw7 mediates the ubiquitylation and consequent degradation of proteins that regulate cell cycle progression, including cyclin E, c-Myc, c-Jun and Notch. Moreover, certain human cancer cell lines harbor loss-of-function mutations in FBXW7 that result in excessive accumulation of Fbxw7 substrates, implicating Fbxw7 in tumor suppression. To elucidate the physiological function of Fbxw7, we conditionally ablated Fbxw7 in mouse embryonic fibroblasts (MEFs). Unexpectedly, loss of Fbxw7 induced cell cycle arrest and apoptosis that were accompanied by abnormal accumulation of the intracellular domain of Notch1 (NICD1). Forced expression of NICD1 in wild-type MEFs recapitulated the phenotype of the Fbxw7-deficient (Fbxw7Δ/Δ) MEFs. Conversely, deletion of Rbpj normalized the phenotype of Fbxw7Δ/Δ MEFs, indicating that this phenotype is dependent on the Notch1–RBP-J signaling pathway. Deletion of the p53 gene prevented cell cycle arrest but not the induction of apoptosis in Fbxw7Δ/Δ cells. These observations suggest that Fbxw7 does not function as an oncosuppressor in MEFs. Instead, it promotes cell cycle progression and cell survival through degradation of Notch1, with loss of Fbxw7 resulting in NICD1 accumulation, cell cycle arrest and apoptosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Akhoondi S, Sun D, von der Lehr N, Apostolidou S, Klotz K, Maljukova A et al. (2007). FBXW7/hCDC4 is a general tumor suppressor in human cancer. Cancer Res 67: 9006–9012.

    Article  CAS  Google Scholar 

  • Artavanis-Tsakonas S, Rand MD, Lake RJ . (1999). Notch signaling: cell fate control and signal integration in development. Science 284: 770–776.

    Article  CAS  Google Scholar 

  • Blackwood EM, Kretzner L, Eisenman RN . (1992). Myc and Max function as a nucleoprotein complex. Curr Opin Genet Dev 2: 227–235.

    Article  CAS  Google Scholar 

  • Foltz DR, Santiago MC, Berechid BE, Nye JS . (2002). Glycogen synthase kinase-3β modulates notch signaling and stability. Curr Biol 12: 1006–1011.

    Article  CAS  Google Scholar 

  • Fryer CJ, White JB, Jones KA . (2004). Mastermind recruits CycC:CDK8 to phosphorylate the Notch ICD and coordinate activation with turnover. Mol Cell 16: 509–520.

    Article  CAS  Google Scholar 

  • Fujii Y, Yada M, Nishiyama M, Kamura T, Takahashi H, Tsunematsu R et al. (2006). Fbxw7 contributes to tumor suppression by targeting multiple proteins for ubiquitin-dependent degradation. Cancer Sci 97: 729–736.

    Article  CAS  Google Scholar 

  • Guentchev M, McKay RD . (2006). Notch controls proliferation and differentiation of stem cells in a dose-dependent manner. Eur J Neurosci 23: 2289–2296.

    Article  Google Scholar 

  • Gupta-Rossi N, Le Bail O, Gonen H, Brou C, Logeat F, Six E et al. (2001). Functional interaction between SEL-10, an F-box protein, and the nuclear form of activated Notch1 receptor. J Biol Chem 276: 34371–34378.

    Article  CAS  Google Scholar 

  • Han H, Tanigaki K, Yamamoto N, Kuroda K, Yoshimoto M, Nakahata T et al. (2002). Inducible gene knockout of transcription factor recombination signal binding protein-J reveals its essential role in T versus B lineage decision. Int Immunol 14: 637–645.

    Article  CAS  Google Scholar 

  • Huang Q, Raya A, DeJesus P, Chao SH, Quon KC, Caldwell JS et al. (2004). Identification of p53 regulators by genome-wide functional analysis. Proc Natl Acad Sci USA 101: 3456–3461.

    Article  CAS  Google Scholar 

  • Hubbard EJ, Wu G, Kitajewski J, Greenwald I . (1997). sel-10, a negative regulator of lin-12 activity in Caenorhabditis elegans, encodes a member of the CDC4 family of proteins. Genes Dev 11: 3182–3193.

    Article  CAS  Google Scholar 

  • Kato H, Sakai T, Tamura K, Minoguchi S, Shirayoshi Y, Hamada Y et al. (1996). Functional conservation of mouse Notch receptor family members. FEBS Lett 395: 221–224.

    Article  CAS  Google Scholar 

  • Kitagawa M, Hatakeyama S, Shirane M, Matsumoto M, Ishida N, Hattori K et al. (1999). An F-box protein, FWD1, mediates ubiquitin-dependent proteolysis of β-catenin. EMBO J 18: 2401–2410.

    Article  CAS  Google Scholar 

  • Koepp DM, Schaefer LK, Ye X, Keyomarsi K, Chu C, Harper JW et al. (2001). Phosphorylation-dependent ubiquitination of cyclin E by the SCF(Fbw7) ubiquitin ligase. Science 294: 173–177.

    Article  CAS  Google Scholar 

  • Koff A, Giordano A, Desai D, Yamashita K, Harper JW, Elledge S et al. (1992). Formation and activation of a cyclin E-cdk2 complex during the G1 phase of the human cell cycle. Science 257: 1689–1694.

    Article  CAS  Google Scholar 

  • Loeb KR, Kostner H, Firpo E, Norwood T, Tsuchiya KD, Clurman BE et al. (2005). A mouse model for cyclin E-dependent genetic instability and tumorigenesis. Cancer Cell 8: 35–47.

    Article  CAS  Google Scholar 

  • Lopez-Nieva P, Santos J, Fernandez-Piqueras J . (2004). Defective expression of Notch1 and Notch2 in connection to alterations of c-Myc and Ikaros in γ-radiation-induced mouse thymic lymphomas. Carcinogenesis 25: 1299–1304.

    Article  CAS  Google Scholar 

  • Mao JH, Perez-Losada J, Wu D, Delrosario R, Tsunematsu R, Nakayama KI et al. (2004). Fbxw7/Cdc4 is a p53-dependent, haploinsufficient tumour suppressor gene. Nature 432: 775–779.

    Article  CAS  Google Scholar 

  • Mo JS, Kim MY, Han SO, Kim IS, Ann EJ, Lee KS et al. (2007). Integrin-linked kinase controls Notch1 signaling by down-regulation of protein stability through Fbw7 ubiquitin ligase. Mol Cell Biol 27: 5565–5574.

    Article  CAS  Google Scholar 

  • Moberg KH, Bell DW, Wahrer DC, Haber DA, Hariharan IK . (2001). Archipelago regulates Cyclin E levels in Drosophila and is mutated in human cancer cell lines. Nature 413: 311–316.

    Article  CAS  Google Scholar 

  • Morita S, Kojima T, Kitamura T . (2000). Plat-E: an efficient and stable system for transient packaging of retroviruses. Gene Ther 7: 1063–1066.

    Article  CAS  Google Scholar 

  • Nakayama K, Ishida N, Shirane M, Inomata A, Inoue T, Shishido N et al. (1996). Mice lacking p27(Kip1) display increased body size, multiple organ hyperplasia, retinal dysplasia, and pituitary tumors. Cell 85: 707–720.

    Article  CAS  Google Scholar 

  • Nakayama KI, Nakayama K . (2006). Ubiquitin ligases: cell-cycle control and cancer. Nat Rev Cancer 6: 369–381.

    Article  CAS  Google Scholar 

  • Nateri AS, Riera-Sans L, Da Costa C, Behrens A . (2004). The ubiquitin ligase SCF(Fbw7) antagonizes apoptotic JNK signaling. Science 303: 1374–1378.

    Article  CAS  Google Scholar 

  • Nicolas M, Wolfer A, Raj K, Kummer JA, Mill P, van Noort M et al. (2003). Notch1 functions as a tumor suppressor in mouse skin. Nat Genet 33: 416–421.

    Article  CAS  Google Scholar 

  • Oberg C, Li J, Pauley A, Wolf E, Gurney M, Lendahl U . (2001). The Notch intracellular domain is ubiquitinated and negatively regulated by the mammalian Sel-10 homolog. J Biol Chem 276: 35847–35853.

    Article  CAS  Google Scholar 

  • O’Neil J, Grim J, Strack P, Rao S, Tibbitts D, Winter C et al. (2007). FBW7 mutations in leukemic cells mediate NOTCH pathway activation and resistance to gamma-secretase inhibitors. J Exp Med 204: 1813–1824.

    Article  Google Scholar 

  • Onoyama I, Tsunematsu R, Matsumoto A, Kimura T, de Alboran IM, Nakayama K et al. (2007). Conditional inactivation of Fbxw7 impairs cell-cycle exit during T cell differentiation and results in lymphomatogenesis. J Exp Med 204: 2875–2888.

    Article  CAS  Google Scholar 

  • Radtke F, Raj K . (2003). The role of Notch in tumorigenesis: oncogene or tumour suppressor? Nat Rev Cancer 3: 756–767.

    Article  CAS  Google Scholar 

  • Ramain P, Khechumian K, Seugnet L, Arbogast N, Ackermann C, Heitzler P . (2001). Novel Notch alleles reveal a Deltex-dependent pathway repressing neural fate. Curr Biol 11: 1729–1738.

    Article  CAS  Google Scholar 

  • Rangarajan A, Talora C, Okuyama R, Nicolas M, Mammucari C, Oh H et al. (2001). Notch signaling is a direct determinant of keratinocyte growth arrest and entry into differentiation. EMBO J 20: 3427–3436.

    Article  CAS  Google Scholar 

  • Ruel L, Bourouis M, Heitzler P, Pantesco V, Simpson P . (1993). Drosophila shaggy kinase and rat glycogen synthase kinase-3 have conserved activities and act downstream of Notch. Nature 362: 557–560.

    Article  CAS  Google Scholar 

  • Sarmento LM, Huang H, Limon A, Gordon W, Fernandes J, Tavares MJ et al. (2005). Notch1 modulates timing of G1-S progression by inducing SKP2 transcription and p27 Kip1 degradation. J Exp Med 202: 157–168.

    Article  CAS  Google Scholar 

  • Strohmaier H, Spruck CH, Kaiser P, Won KA, Sangfelt O, Reed SI . (2001). Human F-box protein hCdc4 targets cyclin E for proteolysis and is mutated in a breast cancer cell line. Nature 413: 316–322.

    Article  CAS  Google Scholar 

  • Sundaram M, Greenwald I . (1993). Suppressors of a lin-12 hypomorph define genes that interact with both lin-12 and glp-1 in Caenorhabditis elegans. Genetics 135: 765–783.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sundqvist A, Bengoechea-Alonso MT, Ye X, Lukiyanchuk V, Jin J, Harper JW et al. (2005). Control of lipid metabolism by phosphorylation-dependent degradation of the SREBP family of transcription factors by SCF(Fbw7). Cell Metab 1: 379–391.

    Article  CAS  Google Scholar 

  • Tetzlaff MT, Yu W, Li M, Zhang P, Finegold M, Mahon K et al. (2004). Defective cardiovascular development and elevated cyclin E and Notch proteins in mice lacking the Fbw7 F-box protein. Proc Natl Acad Sci USA 101: 3338–3345.

    Article  CAS  Google Scholar 

  • Thompson BJ, Buonamici S, Sulis ML, Palomero T, Vilimas T, Basso G et al. (2007). The SCF(FBW7) ubiquitin ligase complex as a tumor suppressor in T cell leukemia. J Exp Med 204: 1825–1835.

    Article  CAS  Google Scholar 

  • Tsunematsu R, Nakayama K, Oike Y, Nishiyama M, Ishida N, Hatakeyama S et al. (2004). Mouse Fbw7/Sel-10/Cdc4 is required for notch degradation during vascular development. J Biol Chem 279: 9417–9423.

    Article  CAS  Google Scholar 

  • Wei W, Jin J, Schlisio S, Harper JW, Kaelin Jr WG . (2005). The v-Jun point mutation allows c-Jun to escape GSK3-dependent recognition and destruction by the Fbw7 ubiquitin ligase. Cancer Cell 8: 25–33.

    Article  CAS  Google Scholar 

  • Welcker M, Clurman BE . (2008). FBW7 ubiquitin ligase: a tumour suppressor at the crossroads of cell division, growth and differentiation. Nat Rev Cancer 8: 83–93.

    Article  CAS  Google Scholar 

  • Welcker M, Orian A, Jin J, Grim JE, Harper JW, Eisenman RN et al. (2004). The Fbw7 tumor suppressor regulates glycogen synthase kinase 3 phosphorylation-dependent c-Myc protein degradation. Proc Natl Acad Sci USA 101: 9085–9090.

    Article  CAS  Google Scholar 

  • Weng AP, Millholland JM, Yashiro-Ohtani Y, Arcangeli ML, Lau A, Wai C et al. (2006). c-Myc is an important direct target of Notch1 in T-cell acute lymphoblastic leukemia/lymphoma. Genes Dev 20: 2096–2109.

    Article  CAS  Google Scholar 

  • Yada M, Hatakeyama S, Kamura T, Nishiyama M, Tsunematsu R, Imaki H et al. (2004). Phosphorylation-dependent degradation of c-Myc is mediated by the F-box protein Fbw7. EMBO J 23: 2116–2125.

    Article  CAS  Google Scholar 

  • Yang X, Klein R, Tian X, Cheng HT, Kopan R, Shen J . (2004). Notch activation induces apoptosis in neural progenitor cells through a p53-dependent pathway. Dev Biol 269: 81–94.

    Article  CAS  Google Scholar 

  • Zweidler-McKay PA, He Y, Xu L, Rodriguez CG, Karnell FG, Carpenter AC et al. (2005). Notch signaling is a potent inducer of growth arrest and apoptosis in a wide range of B-cell malignancies. Blood 106: 3898–3906.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T Honjo for RbpjF/F mice; R Tsunematsu for an NICD1 plasmid; T Kitamura for pMX-puro and Plat-E cells; Y Ono and N Kobayashi for technical assistance; N Ishida and other laboratory members for helpful discussion. This study was supported in part by a Grant-in-Aid from the Ministry of Education, Culture, Sports, Science, and Technology of Japan and by the 21st Century Center of Excellence Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Nakayama.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ishikawa, Y., Onoyama, I., Nakayama, K. et al. Notch-dependent cell cycle arrest and apoptosis in mouse embryonic fibroblasts lacking Fbxw7. Oncogene 27, 6164–6174 (2008). https://doi.org/10.1038/onc.2008.216

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.216

Keywords

This article is cited by

Search

Quick links