Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

β-catenin directly displaces Groucho/TLE repressors from Tcf/Lef in Wnt-mediated transcription activation

Abstract

Wnt growth factors mediate cell fate determination during embryogenesis and in the renewal of tissues in the adult. Wnts act by stabilizing cellular levels of the transcriptional coactivator β-catenin, which forms complexes with sequence-specific DNA-binding Tcf/Lef transcription factors. In the absence of nuclear β-catenin, Tcf/Lefs act as transcriptional repressors by binding to Groucho/TLE proteins. The molecular basis of the switch from transcriptional repression to activation during Wnt signaling has not been clear, in particular whether factors other than β-catenin are required to disrupt the interaction between Groucho/TLE and Tcf/Lef. Using highly purified proteins, we demonstrate that β-catenin displaces Groucho/TLE from Tcf/Lef by binding to a previously unidentified second, low-affinity binding site on Lef-1 that includes sequences just N-terminal to the DNA-binding domain, and that overlaps the Groucho/TLE-binding site.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Transcription activation by β-catenin.
Figure 2: Regions of interaction and experimental constructs.
Figure 3: Lef-1 binding to TLE and β-catenin.
Figure 4: Disruption of the TLE-1–Lef-1–DNA complex by β-catenin.
Figure 5: β-catenin and TLE compete for binding to Lef-1.
Figure 6: Limited proteolysis of Lef-1 complexes.
Figure 7: The N terminus of Lef-1 is not required or sufficient for TLE interaction.
Figure 8: The C terminus of Lef-1 binds to TLE and to β-catenin.

Similar content being viewed by others

References

  1. Cadigan, K.M. & Nusse, R. Wnt signaling: a common theme in animal development. Genes Dev. 11, 3286–3305 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Bienz, M. & Clevers, H. Linking colorectal cancer to Wnt signaling. Cell 103, 311–320 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Nusse, R. WNT targets: Repression and activation. Trends Genet. 15, 1–3 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Hecht, A. & Kemler, R. Curbing the nuclear activities of β-catenin. EMBO Rep. 1, 24–28 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Aberle, H., Bauer, A., Stappert, J., Kispert, A. & Kemler, R. β-catenin is a target for the ubiquitin-proteasome pathway. EMBO J. 16, 3797–3804 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Amit, S. et al. Axin-mediated CKI phosphorylation of β-catenin at Ser 45: a molecular switch for the Wnt pathway. Genes Dev. 16, 1066–1076 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Behrens, J. et al. Functional interaction of an Axin homolog, conductin, with β-catenin, APC, and GSK3β. Science 280, 596–599 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Hart, M.J., de los Santos, R., Albert, I.N., Rubinfeld, B. & Polakis, P. Downregulation of β-catenin by human Axin and its association with the APC tumor suppressor, β-catenin, and GSK3β. Curr. Biol. 8, 573–581 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Orford, K., Crockett, C., Jensen, J.P., Weissman, A.M. & Byers, S.W. Serine phosphorylation-regulated ubiquitination and degradation of β-catenin. J. Biol. Chem. 272, 24735–24738 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Rubinfeld, B. et al. Binding of GSK3β to the APC–β-catenin complex and regulation of complex assembly. Science 272, 1023–1026 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Behrens, J. et al. Functional interaction of β-catenin with the transcription factor LEF-1. Nature 382, 638–642 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Brunner, E., Peter, O., Schweizer, L. & Basler, K. pangolin encodes a Lef-1 homologue that acts downstream of Armadillo to transduce the Wingless signal in Drosophila. Nature 385, 829–833 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Molenaar, M. et al. XTcf-3 transcription factor mediates β-catenin-induced axis formation in Xenopus embryos. Cell 86, 391–399 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. van de Wetering, M. et al. Armadillo coactivates transcription driven by the product of the Drosophila segment polarity gene dTCF. Cell 88, 789–799 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Korinek, V. et al. Constitutive transcriptional activation by a β-catenin–Tcf complex in APC−/− colon carcinoma. Science 275, 1784–1787 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Morin, P.J. et al. Activation of β-catenin–Tcf signaling in colon cancer by mutations in β-catenin or APC. Science 275, 1787–1790 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Rubinfeld, B., Albert, I., Porfiri, E., Munemitsu, S. & Polakis, P. Loss of β-catenin regulation by the APC tumor suppressor protein correlates with loss of structure due to common somatic mutations of the gene. Cancer Res. 57, 4624–4630 (1997).

    CAS  PubMed  Google Scholar 

  18. Rubinfeld, B. et al. Stabilization of β-catenin by genetic defects in melanoma cell lines. Science 275, 1790–1792 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Polakis, P. Wnt signaling and cancer. Genes Dev. 14, 1837–1851 (2000).

    CAS  PubMed  Google Scholar 

  20. Hurlstone, A. & Clevers, H. T-cell factors: turn-ons and turn-offs. EMBO J. 21, 2303–2311 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Townsley, F.M., Thompson, B., Bienz, M. Pygopus residues required for its binding to Legless are critical for transcription and development. J. Biol. Chem. 279, 5177–5183 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Parker, D.S., Jemison, J., Cadigan K.M. Pygopus, a nuclear PHD-finger protein required for Wingless signaling in Drosophila. Development 11, 2565–2576 (2002).

    Google Scholar 

  23. Thompson, B., Townsley, F., Rosin-Arbesfeld, R., Musisi, H. & Bienz, M. A new nuclear component of the Wnt signalling pathway. Nat. Cell Biol. 4, 367–373 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Kramps, T. et al. Wnt/Wingless signaling requires BCL9/Legless-mediated recrutiment of pygopus to the nuclear β-catenin–TCF complex. Cell 109, 47–60 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Hecht, A., Litterst, C.M., Huber, O. & Kemler, R. Functional characterization of multiple transactivating elements in β-catenin, some of which interact with the TATA-binding protein in vitro. J. Biol. Chem. 274, 18017–18025 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Hsu, S.-C., Galceran, J. & Grosschedl, R. Modulation of transcriptional regulation by LEF-1 in response to Wnt-1 signaling and association with β-catenin. Mol. Cell. Biol. 18, 4807–4818 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hecht, A., Vleminckx, K., Stemmler, M.P., van Roy, F. & Kemler, R. The p300/CBP acetyltransferases function as transcriptional coactivators of β-catenin in vertebrates. EMBO J. 19, 1839–1850 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Daniels, D.L. & Weis, W.I. ICAT inhibits β-catenin binding to Tcf/Lef-family transcription factors and the general coactivator p300 using independent structural modules. Mol. Cell 10, 573–584 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Takemaru, K. & Moon, R.T. The transcriptional coactivator CBP interacts with β-catenin to activate gene expression. J. Cell Biol. 149, 249–254 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tutter, A.V., Fryer, C.J. & Jones, K.A. Chromatin-specific regulation of LEF-1-β-catenin transcription activation and inhibition in vitro. Genes Dev. 15, 3342–3354 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Goodman, R.H. & Smolik, S. CBP/p300 in cell growth, transformation, and development. Genes Dev. 14, 1553–1577 (2000).

    CAS  PubMed  Google Scholar 

  32. Barker, N. et al. The chromatin remodelling factor Brg-1 interacts with β-catenin to promote target gene activation. EMBO J. 20, 4935–4943 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Billin, A.N., Thirlwell, H. & Ayer, D.E. β-catenin-histone deacetylase interactions regulate the transition of LEF1 from a transcriptional repressor to an activator. Mol. Cell. Biol. 20, 6882–6890 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Brantjes, H., Roose, J., van de Wetering, M. & Clevers, H. All Tcf HMG box transcription factors interact with Groucho-related co-repressors. Nucleic Acids Res. 29, 1410–1419 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cavallo, R.A. et al. Drosophila Tcf and Groucho interact to repress Wingless signalling activity. Nature 395, 604–608 (1998).

    Article  CAS  PubMed  Google Scholar 

  36. Roose, J. et al. The Xenopus Wnt effector XTcf-3 interacts with Groucho-related transcriptional repressors. Nature 395, 608–612 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Chen, G. & Courey, A.J. Groucho/TLE family proteins and transcriptional repression. Gene 249, 1–16 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Courey, A.J. & Jia, S. Transcriptional repression: the long and short of it. Genes Dev. 15, 2786–2796 (2001).

    CAS  PubMed  Google Scholar 

  39. Fisher, A.L. & Caudy, M. Groucho proteins: transcriptional corepressors for specific subsets of DNA-binding transcription factors in vertebrates and invertebrates. Genes Dev. 12, 1931–1940 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Narlikar, G.J., Fan, H.-Y. & Kingston, R.E. Cooperation between complexes that regulate chromatin structure and transcription. Cell 108, 475–487 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Waltzer, L. & Bienz, M. Drosophila CBP represses the transcription factor TCF to antagonize Wingless signalling. Nature 395, 521–525 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. Stifani, S., Blaumueller, C.M., Redhead, N.J., Hill, R.E. & Artavanis-Tsakonas, S. Human homologs of a Drosophila enhancer of split gene product define a novel family of nuclear proteins. Nat. Genet. 2, 119–127 (1992).

    Article  CAS  PubMed  Google Scholar 

  43. Pinto, M. & Lobe, C.G. Products of the grg (Groucho-related gene) family can dimerize through the amino-terminal Q domain. J. Biol. Chem. 271, 33026-33031 (1996).

  44. Chen, G., Nguyen, P.H., Courey, A.J. A role for groucho tetramerization in transcriptional repression. Mol. Cell. Biol. 18, 7259–7268 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Song, H., Hasson, P., Paroush, Z., Courey, A.J. Groucho oligomerization is required for repression in vivo. Mol. Cell. Biol. 24, 4341–4350 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Graham, T.A., Ferkey, D.M., Mao, F., Kimelman, D. & Xu, W. Tcf4 can specifically recognize β-catenin using alternative conformations. Nat. Struct. Biol. 8, 1048–1052 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Graham, T.A., Weaver, C., Mao, F., Kimmelman, D. & Xu, W. Crystal structure of a β-catenin/Tcf complex. Cell 103, 885–896 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Poy, F., Lepourcelet, M., Shivdasani, R.A. & Eck, M.J. Structure of a human Tcf4–β-catenin complex. Nat. Struct. Biol. 8, 1053–1057 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. van de Wetering, M., Oosterwegel, M., Dooijes, D., Clevers, H. Identification and cloning of TCF-1, a T cell-specific transcription factor containing a sequence-specific HMG box. EMBO J. 10, 123–132 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Love, J.J., Li, X., Chung, J., Dyson, H.J., Wright, P.E. The Lef-1 high mobility group domain undergoes a disorder-to-order transition upon formation of a complex with cognate DNA. Biochemistry 43, 8725–8734 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Schweizer, L., Nellen, D., Basler, K. Requirements for Pangolin/dTCF in Drosophila Wingless signaling. Proc. Natl. Acad. Sci. USA 100, 5846–5851 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Roose, J. et al. Synergy between tumor suppressor APC and the β-catenin-Tcf4 target Tcf1. Science 285, 1923–1926 (1999).

    Article  CAS  PubMed  Google Scholar 

  53. Huber, A.H., Nelson, W.J. & Weis, W.I. Three-dimensional structure of the armadillo repeat region of β-catenin. Cell 90, 871–882 (1997).

    Article  CAS  PubMed  Google Scholar 

  54. Yang, W., Steitz, T.A. Crystal structure of the site-specific recombinase γ δ resolvase complexes with a 34bp cleavage site. Cell 82, 193–207 (1995).

    Article  CAS  PubMed  Google Scholar 

  55. Love, J.J. et al. Structural basis for DNA bending by the architectural transcription factor LEF-1. Nature 376, 791–795 (1995).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Boulanger for assistance with the MALLS analysis, H.-J. Choi for the ITC data, S. Frydman for technical assistance and S. Stifani for TLE cDNAs. The tryptic peptide mapping was carried out by the Protein and Nucleic Acid Facility at Stanford University School of Medicine and mass spectrometry was done at the Molecular Structure Facility at University of California, Davis. This work was supported by grant GM56169 from the US National Institutes of Health to W.I.W.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William I Weis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

MALLS analysis. (PDF 336 kb)

Supplementary Fig. 2

ITC data. (PDF 164 kb)

Supplementary Table 1

MALLS molecular mass. (PDF 60 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daniels, D., Weis, W. β-catenin directly displaces Groucho/TLE repressors from Tcf/Lef in Wnt-mediated transcription activation. Nat Struct Mol Biol 12, 364–371 (2005). https://doi.org/10.1038/nsmb912

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb912

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing