Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

How bacterial ADP-ribosylating toxins recognize substrates

Abstract

ExoS and ExoT are bifunctional type III cytotoxins of Pseudomonas aeruginosa that contain an N-terminal RhoGAP domain and a C-terminal ADP-ribosylation domain. Although they share 76% amino acid identity, ExoS and ExoT ADP-ribosylate different substrates. Using protein modeling and site-directed mutagenesis, the regions of ExoS and ExoT that define substrate specificity were determined. Regions B (active site loop), C (ARTT motif) and E (PN loop) on ExoS are necessary and sufficient to recognize ExoS targets, whereas regions B, C and E on ExoT are necessary but not sufficient to recognize ExoT targets, such as the Crk proteins. A specific Crk recognition motif on ExoT was defined as region A (helix α1). The electrostatic properties of regions A, B, C and E define the substrate specificity of ExoS and ExoT and these interactions can explain how other bacterial ADP-ribosylating toxins recognize their unique substrates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Protein modeling of the ADP-ribosylation domains of ExoS and ExoT.
Figure 2: Regions B, C and E are required for substrate recognition of ExoS and ExoT.
Figure 3: Regions B, C and E constitute the substrate recognition sites for ExoS, but not for ExoT.
Figure 4: ExoT(S:BCE) showed a target profile similar to that of ExoS.
Figure 5: Region A of ExoT is the specific Crk recognition motif.
Figure 6: In vivo substrate specificity of ExoS and ExoT.
Figure 7: Effect of NaCl on substrate recognition of ExoS and ExoT.
Figure 8: The ADP-ribosylating toxins recognize protein substrates through electrostatic interaction.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Krueger, K.M. & Barbieri, J.T. The family of bacterial ADP-ribosylating exotoxins. Clin. Microbiol. Rev. 8, 34–47 (1995).

    Article  CAS  Google Scholar 

  2. Bjorn, M.J., Pavlovskis, O.R., Thompson, M.R. & Iglewski, B.H. Production of exoenzyme S during Pseudomonas aeruginosa infections of burned mice. Infect. Immun. 24, 837–842 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Kulich, S.M., Frank, D.W. & Barbieri, J.T. Purification and characterization of exoenzyme S from Pseudomonas aeruginosa 388. Infect. Immun. 61, 307–313 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Kulich, S.M., Yahr, T.L., Mende-Mueller, L.M., Barbieri, J.T. & Frank, D.W. Cloning the structural gene for the 49-kDa form of exoenzyme S (exoS) from Pseudomonas aeruginosa strain 388. J. Biol. Chem. 269, 10431–10437 (1994).

    CAS  PubMed  Google Scholar 

  5. Yahr, T.L., Barbieri, J.T. & Frank, D.W. Genetic relationship between the 53- and 49-kilodalton forms of exoenzyme S from Pseudomonas aeruginosa. J. Bacteriol. 178, 1412–1419 (1996).

    Article  CAS  Google Scholar 

  6. Goehring, U.M., Schmidt, G., Pederson, K.J., Aktories, K. & Barbieri, J.T. The N-terminal domain of Pseudomonas aeruginosa exoenzyme S is a GTPase-activating protein for Rho GTPases. J. Biol. Chem. 274, 36369–36372 (1999).

    Article  CAS  Google Scholar 

  7. Krall, R., Schmidt, G., Aktories, K. & Barbieri, J.T. Pseudomonas aeruginosa ExoT is a Rho GTPase-activating protein. Infect. Immun. 68, 6066–6068 (2000).

    Article  CAS  Google Scholar 

  8. Kazmierczak, B.I. & Engel, J.N. Pseudomonas aeruginosa ExoT acts in vivo as a GTPase-activating protein for RhoA, Rac1, and Cdc42. Infect. Immun. 70, 2198–2205 (2002).

    Article  CAS  Google Scholar 

  9. Garrity-Ryan, L. et al. The arginine finger domain of ExoT contributes to actin cytoskeleton disruption and inhibition of internalization of Pseudomonas aeruginosa by epithelial cells and macrophages. Infect. Immun. 68, 7100–7113 (2000).

    Article  CAS  Google Scholar 

  10. Geiser, T.K., Kazmierczak, B.I., Garrity-Ryan, L.K., Matthay, M.A. & Engel, J.N. Pseudomonas aeruginosa ExoT inhibits in vitro lung epithelial wound repair. Cell Microbiol. 3, 223–236 (2001).

    Article  CAS  Google Scholar 

  11. Coburn, J., Dillon, S.T., Iglewski, B.H. & Gill, D.M. Exoenzyme S of Pseudomonas aeruginosa ADP-ribosylates the intermediate filament protein vimentin. Infect. Immun. 57, 996–998 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Coburn, J. & Gill, D.M. ADP-ribosylation of p21ras and related proteins by Pseudomonas aeruginosa exoenzyme S. Infect. Immun. 59, 4259–4262 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Ganesan, A.K., Vincent, T.S., Olson, J.C. & Barbieri, J.T. Pseudomonas aeruginosa exoenzyme S disrupts Ras-mediated signal transduction by inhibiting guanine nucleotide exchange factor-catalyzed nucleotide exchange. J. Biol. Chem. 274, 21823–21829 (1999).

    Article  CAS  Google Scholar 

  14. Coburn, J., Kane, A.V., Feig, L. & Gill, D.M. Pseudomonas aeruginosa exoenzyme S requires a eukaryotic protein for ADP-ribosyltransferase activity. J. Biol. Chem. 266, 6438–6446 (1991).

    CAS  PubMed  Google Scholar 

  15. Fu, H., Coburn, J. & Collier, R.J. The eukaryotic host factor that activates exoenzyme S of Pseudomonas aeruginosa is a member of the 14-3-3 protein family. Proc. Natl. Acad. Sci. USA 90, 2320–2324 (1993).

    Article  CAS  Google Scholar 

  16. Liu, S., Kulich, S.M. & Barbieri, J.T. Identification of glutamic acid 381 as a candidate active site residue of Pseudomonas aeruginosa exoenzyme S. Biochemistry 35, 2754–2758 (1996).

    Article  CAS  Google Scholar 

  17. Radke, J., Pederson, K.J. & Barbieri, J.T. Pseudomonas aeruginosa exoenzyme S is a biglutamic acid ADP-ribosyltransferase. Infect. Immun. 67, 1508–1510 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu, S., Yahr, T.L., Frank, D.W. & Barbieri, J.T. Biochemical relationships between the 53-kilodalton (Exo53) and 49-kilodalton (ExoS) forms of exoenzyme S of Pseudomonas aeruginosa. J. Bacteriol. 179, 1609–1613 (1997).

    Article  CAS  Google Scholar 

  19. Sundin, C., Henriksson, M.L., Hallberg, B., Forsberg, A. & Frithz-Lindsten, E. Exoenzyme T of Pseudomonas aeruginosa elicits cytotoxicity without interfering with Ras signal transduction. Cell Microbiol. 3, 237–246 (2001).

    Article  CAS  Google Scholar 

  20. Sun, J. & Barbieri, J.T. Pseudomonas aeruginosa ExoT ADP-ribosylates CT10 regulator of kinase (Crk) proteins. J. Biol. Chem. 278, 32794–32800 (2003).

    Article  CAS  Google Scholar 

  21. Bell, C.E. & Eisenberg, D. Crystal structure of diphtheria toxin bound to nicotinamide adenine dinucleotide. Biochemistry 35, 1137–1149 (1996).

    Article  CAS  Google Scholar 

  22. Sixma, T.K. et al. Refined structure of Escherichia coli heat-labile enterotoxin, a close relative of cholera toxin. J. Mol. Biol. 230, 890–918 (1993).

    Article  CAS  Google Scholar 

  23. Sixma, T.K., Stein, P.E., Hol, W.G. & Read, R.J. Comparison of the B-pentamers of heat-labile enterotoxin and verotoxin-1: two structures with remarkable similarity and dissimilarity. Biochemistry 32, 191–198 (1993).

    Article  CAS  Google Scholar 

  24. Wedekind, J.E. et al. Refined crystallographic structure of Pseudomonas aeruginosa exotoxin A and its implications for the molecular mechanism of toxicity. J. Mol. Biol. 314, 823–837 (2001).

    Article  CAS  Google Scholar 

  25. Allured, V.S., Collier, R.J., Carroll, S.F. & McKay, D.B. Structure of exotoxin A of Pseudomonas aeruginosa at 3.0-Angstrom resolution. Proc. Natl. Acad. Sci. USA 83, 1320–1324 (1986).

    Article  CAS  Google Scholar 

  26. Li, M., Dyda, F., Benhar, I., Pastan, I. & Davies, D.R. Crystal structure of the catalytic domain of Pseudomonas exotoxin A complexed with a nicotinamide adenine dinucleotide analog: implications for the activation process and for ADP ribosylation. Proc. Natl. Acad. Sci. USA 93, 6902–6906 (1996).

    Article  CAS  Google Scholar 

  27. Stein, P.E. et al. The crystal structure of pertussis toxin. Structure 2, 45–57 (1994).

    Article  CAS  Google Scholar 

  28. Han, S., Craig, J.A., Putnam, C.D., Carozzi, N.B. & Tainer, J.A. Evolution and mechanism from structures of an ADP-ribosylating toxin and NAD complex. Nat. Struct. Biol. 6, 932–936 (1999).

    Article  CAS  Google Scholar 

  29. Han, S., Arvai, A.S., Clancy, S.B. & Tainer, J.A. Crystal structure and novel recognition motif of rho ADP-ribosylating C3 exoenzyme from Clostridium botulinum: structural insights for recognition specificity and catalysis. J. Mol. Biol. 305, 95–107 (2001).

    Article  CAS  Google Scholar 

  30. Tsuge, H. et al. Crystal structure and site-directed mutagenesis of enzymatic components from Clostridium perfringens iota-toxin. J. Mol. Biol. 325, 471–483 (2003).

    Article  CAS  Google Scholar 

  31. Evans, H.R. et al. The crystal structure of C3stau2 from Staphylococcus aureus and its complex with NAD. J. Biol. Chem. 278, 45924–45930 (2003).

    Article  CAS  Google Scholar 

  32. Menetrey, J. et al. NAD binding induces conformational changes in Rho ADP-ribosylating Clostridium botulinum C3 exoenzyme. J. Biol. Chem. 277, 30950–30957 (2002).

    Article  CAS  Google Scholar 

  33. Van Ness, B.G., Howard, J.B. & Bodley, J.W. ADP-ribosylation of elongation factor 2 by diphtheria toxin. Isolation and properties of the novel ribosyl-amino acid and its hydrolysis products. J. Biol. Chem. 255, 10717–10720 (1980).

    PubMed  Google Scholar 

  34. Iglewski, B.H. & Kabat, D. NAD-dependent inhibition of protein synthesis by Pseudomonas aeruginosa toxin. Proc. Natl. Acad. Sci. USA 72, 2284–2288 (1975).

    Article  CAS  Google Scholar 

  35. Gierschik, P. ADP-ribosylation of signal-transducing guanine nucleotide-binding proteins by pertussis toxin. Curr. Top. Microbiol. Immunol. 175, 69–96 (1992).

    CAS  PubMed  Google Scholar 

  36. Moss, J. & Richardson, S.H. Activation of adenylate cyclase by heat-labile Escherichia coli enterotoxin. Evidence for ADP-ribosyltransferase activity similar to that of choleragen. J. Clin. Invest. 62, 281–285 (1978).

    Article  CAS  Google Scholar 

  37. Aktories, K. et al. Botulinum C2 toxin ADP-ribosylates actin. Nature 322, 390–392 (1986).

    Article  CAS  Google Scholar 

  38. Schering, B., Barmann, M., Chhatwal, G.S., Geipel, U. & Aktories, K. ADP-ribosylation of skeletal muscle and non-muscle actin by Clostridium perfringens iota toxin. Eur. J. Biochem. 171, 225–229 (1988).

    Article  CAS  Google Scholar 

  39. Aktories, K. & Frevert, J. ADP-ribosylation of a 21–24 kDa eukaryotic protein(s) by C3, a novel botulinum ADP-ribosyltransferase, is regulated by guanine nucleotide. Biochem. J. 247, 363–368 (1987).

    Article  CAS  Google Scholar 

  40. Wilde, C., Chhatwal, G.S., Schmalzing, G., Aktories, K. & Just, I. A novel C3-like ADP-ribosyltransferase from Staphylococcus aureus modifying RhoE and Rnd3. J. Biol. Chem. 276, 9537–9542 (2001).

    Article  CAS  Google Scholar 

  41. Wilde, C., Just, I. & Aktories, K. Structure-function analysis of the Rho-ADP-ribosylating exoenzyme C3stau2 from Staphylococcus aureus. Biochemistry 41, 1539–1544 (2002).

    Article  CAS  Google Scholar 

  42. Schwede, T., Kopp, J., Guex, N. & Peitsch, M.C. SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res. 31, 3381–3385 (2003).

    Article  CAS  Google Scholar 

  43. Guex, N. & Peitsch, M.C. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18, 2714–2723 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant from the US National Institutes of Health (AI-30162) to J.T.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph T Barbieri.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Indicated toxins were incubated with GST-Crk-I or moesin with the presence of NAD/P32-NAD and FAS, and reaction rates (V) were calculated as described in Methods. The data from at least three independent experiments were fit to Michaelis-Menten equation in both SigmaPlot and EnzFitter, where the values of Km and Vmax were calculated. (PDF 84 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, J., Maresso, A., Kim, JJ. et al. How bacterial ADP-ribosylating toxins recognize substrates. Nat Struct Mol Biol 11, 868–876 (2004). https://doi.org/10.1038/nsmb818

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb818

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing