Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crystal structure of yeast mitochondrial outer membrane translocon member Tom70p

Abstract

A majority of the proteins targeted to the mitochondria are transported through the translocase of the outer membrane (TOM) complex. Tom70 is a major surface receptor for mitochondrial protein precursors in the TOM complex. To investigate how Tom70 receives the mitochondrial protein precursors, we have determined the crystal structure of yeast Tom70p to 3.0 Å. Tom70p forms a homodimer in the crystal. Each subunit consists primarily of tetratricopeptide repeat (TPR) motifs, which are organized into a right-handed superhelix. The TPR motifs in the N-terminal domain of Tom70p form a peptide-binding groove for the C-terminal EEVD motif of Hsp70, whereas the C-terminal domain of Tom70p contains a large pocket that may be the binding site for mitochondrial precursors. The crystal structure of Tom70p provides insights into the mechanisms of precursor transport across the mitochondrion's outer membrane.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tom70p monomer structure, shown as ribbons in stereo view31.
Figure 2: Tom70p dimer structure.
Figure 3: Sequence alignment of Tom70 family members from the species indicated at left.
Figure 4: The putative mitochondrial preprotein–binding pocket of Tom70p.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

References

  1. Sickmann, A. et al. The proteome of Saccharomyces cerevisiae mitochondria. Proc. Natl. Acad. Sci. USA 100, 13207–13212 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gray, M.W., Burger, G. & Lang, B.F. Mitochondrial evolution. Science 283, 1476–1481 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Neupert, W. Protein import into mitochondria. Annu. Rev. Biochem. 66, 863–917 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Neupert, W. & Brunner, M. The protein import motor of mitochondria. Nat. Rev. Mol. Cell Biol. 3, 555–565 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Pfanner, N. Protein sorting: recognizing mitochondrial presequences. Curr. Biol. 10, R412–R415 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Abe, Y. et al. Structural basis of presequence recognition by the mitochondrial protein import receptor Tom20. Cell 100, 551–560 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Rehling, P. et al. Protein insertion into the mitochondrial inner membrane by a twin-pore translocase. Science 299, 1747–1751 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Koehler, C.M. New developments in mitochondrial assembly. Annu. Rev. Cell Dev. Biol. 20, 309–335 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Sollner, T., Pfaller, R., Griffiths, G., Pfanner, N. & Neupert, W. A mitochondrial import receptor for the ADP/ATP carrier. Cell 62, 107–115 (1990).

    Article  CAS  PubMed  Google Scholar 

  10. Sollner, T., Griffiths, G., Pfaller, R., Pfanner, N. & Neupert, W. MOM19, an import receptor for mitochondrial precursor proteins. Cell 59, 1061–1070 (1989).

    Article  CAS  PubMed  Google Scholar 

  11. Brix, J., Dietmeier, K. & Pfanner, N. Differential recognition of preproteins by the purified cytosolic domains of the mitochondrial import receptors Tom20, Tom22, and Tom70. J. Biol. Chem. 272, 20730–20735 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Pfanner, N. & Geissler, A. Versatility of the mitochondrial protein import machinery. Nat. Rev. Mol. Cell Biol. 2, 339–349 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Young, J.C., Hoogenraad, N.J. & Hartl, F.U. Molecular chaperones Hsp90 and Hsp70 deliver preproteins to the mitochondrial import receptor Tom70. Cell 112, 41–50 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Claros, M.G. et al. Limitations to in vivo import of hydrophobic proteins into yeast mitochondria. The case of a cytoplasmically synthesized apocytochrome b. Eur. J. Biochem. 228, 762–771 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Beddoe, T. & Lithgow, T. Delivery of nascent polypeptides to the mitochondrial surface. Biochim. Biophys. Acta 1592, 35–39 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Wiedemann, N., Pfanner, N. & Ryan, M.T. The three modules of ADP/ATP carrier cooperate in receptor recruitment and translocation into mitochondria. EMBO J. 20, 951–960 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Brix, J. et al. The mitochondrial import receptor Tom70: identification of a 25 kDa core domain with a specific binding site for preproteins. J. Mol. Biol. 303, 479–488 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Jinek, M. et al. The superhelical TPR-repeat domain of O-linked GlcNAc transferase exhibits structural similarities to importin alpha. Nat. Struct. Mol. Biol. 11, 1001–1007 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Demand, J., Luders, J. & Hohfeld, J. The carboxy-terminal domain of Hsc70 provides binding sites for a distinct set of chaperone cofactors. Mol. Cell. Biol. 18, 2023–2028 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ballinger, C.A. et al. Identification of CHIP, a novel tetratricopeptide repeat-containing protein that interacts with heat shock proteins and negatively regulates chaperone functions. Mol. Cell. Biol. 19, 4535–4545 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Connell, P. et al. The co-chaperone CHIP regulates protein triage decisions mediated by heat-shock proteins. Nat. Cell Biol. 3, 93–96 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Scheufler, C. et al. Structure of TPR domain-peptide complexes: critical elements in the assembly of the Hsp70-Hsp90 multichaperone machine. Cell 101, 199–210 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Brix, J., Rudiger, S., Bukau, B., Schneider-Mergener, J. & Pfanner, N. Distribution of binding sequences for the mitochondrial import receptors Tom20, Tom22, and Tom70 in a presequence-carrying preprotein and a non-cleavable preprotein. J. Biol. Chem. 274, 16522–16530 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Wu, Y., McCombs, D., Nagy, L., DeLucas, L. & Sha, B.D. Preliminary X-ray crystallographic studies of yeast mitochondria translocon member Tom70p. Acta Crystallogr. F 62, 265–267 (2006).

    Article  CAS  Google Scholar 

  25. Terwilliger, T.C. & Berendzen, J. Automated MAD and MIR structure solution. Acta Crystallogr. D Biol. Crystallogr. 55, 849–861 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Terwilliger, T.C. Maximum-likelihood density modification. Acta Crystallogr. D Biol. Crystallogr. 56, 965–972 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  PubMed  Google Scholar 

  28. Wang, J.W., Chen, J.R., Gu, Y.X., Zheng, C.D. & Fan, H.F. Direct-method SAD phasing with partial-structure iteration: towards automation. Acta Crystallogr. D Biol. Crystallogr. 60, 1991–1996 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Brunger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Lovell, S.C. et al. Structure validation by Calpha geometry: phi,psi and Cbeta deviation. Proteins 50, 437–450 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Carson, M. Ribbons 2.0. Ribbon models for macromolecules. J. Mol. Graph. 5, 103–106 (1987).

    Article  CAS  Google Scholar 

  32. Nicholls, A., Sharp, K.A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11, 281–296 (1991).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to the staff scientists at APS beamline SER-CAT for their help in data collection. This work was supported by grants from the US National Institutes of Health (R01 DK56203 and R01 GM65959) and the US National Aeronautics and Space Administration.

Author information

Authors and Affiliations

Authors

Contributions

Y.W. contributed to cloning, protein expression and purification, crystallization and structure determination. B.D.S. contributed to data collection and structure determination.

Corresponding author

Correspondence to Bingdong Sha.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Electron density map for Tom70p from SAD phasing (PDF 300 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, Y., Sha, B. Crystal structure of yeast mitochondrial outer membrane translocon member Tom70p. Nat Struct Mol Biol 13, 589–593 (2006). https://doi.org/10.1038/nsmb1106

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1106

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing