Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Neuropilins lock secreted semaphorins onto plexins in a ternary signaling complex

Abstract

Co-receptors add complexity to cell-cell signaling systems. The secreted semaphorin 3s (Sema3s) require a co-receptor, neuropilin (Nrp), to signal through plexin As (PlxnAs) in functions ranging from axon guidance to bone homeostasis, but the role of the co-receptor is obscure. Here we present the low-resolution crystal structure of a mouse semaphorin–plexin–Nrp complex alongside unliganded component structures. Dimeric semaphorin, two copies of plexin and two copies of Nrp are arranged as a dimer of heterotrimers. In each heterotrimer subcomplex, semaphorin contacts plexin, similar to in co-receptor–independent signaling complexes. The Nrp1s cross brace the assembly, bridging between sema domains of the Sema3A and PlxnA2 subunits from the two heterotrimers. Biophysical and cellular analyses confirm that this Nrp binding mode stabilizes a canonical, but weakened, Sema3–PlxnA interaction, adding co-receptor control over the mechanism by which receptor dimerization and/or oligomerization triggers signaling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nrp1 locks Sema3A and PlxnA2 together.
Figure 2: Complex architecture and interfaces are conserved and validated.
Figure 3: The structure of Sema3AS−P−I is very similar to that of Sema4DS−P−I.
Figure 4: Interface mutants have reduced interaction and activity.
Figure 5: Model for secreted Sema3–PlxnA–Nrp and cell surface–bound Sema6–PlxnA signaling.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Kolodkin, A.L. & Tessier-Lavigne, M. Mechanisms and molecules of neuronal wiring: a primer. Cold Spring Harb. Perspect. Biol. 3, a001727 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Tran, T.S., Kolodkin, A.L. & Bharadwaj, R. Semaphorin regulation of cellular morphology. Annu. Rev. Cell Dev. Biol. 23, 263–292 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Zhou, Y., Gunput, R.A. & Pasterkamp, R.J. Semaphorin signaling: progress made and promises ahead. Trends Biochem. Sci. 33, 161–170 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Takamatsu, H. & Kumanogoh, A. Diverse roles for semaphorin-plexin signaling in the immune system. Trends Immunol. 33, 127–135 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Muratori, C. & Tamagnone, L. Semaphorin signals tweaking the tumor microenvironment. Adv. Cancer Res. 114, 59–85 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Janssen, B.J. et al. Structural basis of semaphorin-plexin signalling. Nature 467, 1118–1122 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nogi, T. et al. Structural basis for semaphorin signalling through the plexin receptor. Nature 467, 1123–1127 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. He, Z. & Tessier-Lavigne, M. Neuropilin is a receptor for the axonal chemorepellent Semaphorin III. Cell 90, 739–751 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Kolodkin, A.L. et al. Neuropilin is a semaphorin III receptor. Cell 90, 753–762 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Tamagnone, L. et al. Plexins are a large family of receptors for transmembrane, secreted, and GPI-anchored semaphorins in vertebrates. Cell 99, 71–80 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Takahashi, T. et al. Plexin–neuropilin-1 complexes form functional semaphorin-3A receptors. Cell 99, 59–69 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Soker, S., Takashima, S., Miao, H.Q., Neufeld, G. & Klagsbrun, M. Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell 92, 735–745 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Antipenko, A. et al. Structure of the semaphorin-3A receptor binding module. Neuron 39, 589–598 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Love, C.A. et al. The ligand-binding face of the semaphorins revealed by the high-resolution crystal structure of SEMA4D. Nat. Struct. Biol. 10, 843–848 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Liu, H. et al. Structural basis of semaphorin-plexin recognition and viral mimicry from Sema7A and A39R complexes with PlexinC1. Cell 142, 749–761 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tong, Y. et al. Structure and function of the intracellular region of the plexin-b1 transmembrane receptor. J. Biol. Chem. 284, 35962–35972 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. He, H., Yang, T., Terman, J.R. & Zhang, X. Crystal structure of the plexin A3 intracellular region reveals an autoinhibited conformation through active site sequestration. Proc. Natl. Acad. Sci. USA 106, 15610–15615 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bell, C.H., Aricescu, A.R., Jones, E.Y. & Siebold, C. A dual binding mode for RhoGTPases in plexin signalling. PLoS Biol. 9, e1001134 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang, Y. et al. Plexins are GTPase-activating proteins for Rap and are activated by induced dimerization. Sci. Signal. 5, ra6 (2012).

    PubMed  PubMed Central  Google Scholar 

  20. Chen, H., He, Z., Bagri, A. & Tessier-Lavigne, M. Semaphorin-neuropilin interactions underlying sympathetic axon responses to class III semaphorins. Neuron 21, 1283–1290 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Giger, R.J. et al. Neuropilin-2 is a receptor for semaphorin IV: insight into the structural basis of receptor function and specificity. Neuron 21, 1079–1092 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Nakamura, F., Tanaka, M., Takahashi, T., Kalb, R.G. & Strittmatter, S.M. Neuropilin-1 extracellular domains mediate semaphorin D/III-induced growth cone collapse. Neuron 21, 1093–1100 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Appleton, B.A. et al. Structural studies of neuropilin/antibody complexes provide insights into semaphorin and VEGF binding. EMBO J. 26, 4902–4912 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gaur, P. et al. Role of class 3 semaphorins and their receptors in tumor growth and angiogenesis. Clin. Cancer Res. 15, 6763–6770 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Rohm, B., Ottemeyer, A., Lohrum, M. & Puschel, A.W. Plexin/neuropilin complexes mediate repulsion by the axonal guidance signal semaphorin 3A. Mech. Dev. 93, 95–104 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Chen, G. et al. Semaphorin-3A guides radial migration of cortical neurons during development. Nat. Neurosci. 11, 36–44 (2008).

    Article  PubMed  Google Scholar 

  27. Takahashi, T. & Strittmatter, S.M. PlexinA1 autoinhibition by the plexin sema domain. Neuron 29, 429–439 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. McCoy, A.J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Toyofuku, T. et al. Repulsive and attractive semaphorins cooperate to direct the navigation of cardiac neural crest cells. Dev. Biol. 321, 251–262 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Adams, R.H., Lohrum, M., Klostermann, A., Betz, H. & Puschel, A.W. The chemorepulsive activity of secreted semaphorins is regulated by furin-dependent proteolytic processing. EMBO J. 16, 6077–6086 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Parker, M.W., Hellman, L.M., Xu, P., Fried, M.G. & Vander Kooi, C.W. Furin processing of semaphorin 3F determines its anti-angiogenic activity by regulating direct binding and competition for neuropilin. Biochemistry 49, 4068–4075 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Merte, J. et al. A forward genetic screen in mice identifies Sema3A(K108N), which binds to neuropilin-1 but cannot signal. J. Neurosci. 30, 5767–5775 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ueyama, H. et al. Semaphorin 3A lytic hybrid peptide binding to neuropilin-1 as a novel anti-cancer agent in pancreatic cancer. Biochem. Biophys. Res. Commun. 414, 60–66 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Shirvan, A. et al. Semaphorins as mediators of neuronal apoptosis. J. Neurochem. 73, 961–971 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Shirvan, A. et al. Anti-semaphorin 3A antibodies rescue retinal ganglion cells from cell death following optic nerve axotomy. J. Biol. Chem. 277, 49799–49807 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Gu, C. et al. Characterization of neuropilin-1 structural features that confer binding to semaphorin 3A and vascular endothelial growth factor 165. J. Biol. Chem. 277, 18069–18076 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Hayashi, M. et al. Osteoprotection by semaphorin 3A. Nature 485, 69–74 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. Roth, L. et al. Transmembrane domain interactions control biological functions of neuropilin-1. Mol. Biol. Cell 19, 646–654 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Aricescu, A.R., Lu, W. & Jones, E.Y. A time- and cost-efficient system for high-level protein production in mammalian cells. Acta Crystallogr. D Biol. Crystallogr. 62, 1243–1250 (2006).

    Article  PubMed  Google Scholar 

  40. O'Callaghan, C.A. et al. BirA enzyme: production and application in the study of membrane receptor-ligand interactions by site-specific biotinylation. Anal. Biochem. 266, 9–15 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Koppel, A.M., Feiner, L., Kobayashi, H. & Raper, J.A. A 70 amino acid region within the semaphorin domain activates specific cellular response of semaphorin family members. Neuron 19, 531–537 (1997).

    Article  CAS  PubMed  Google Scholar 

  42. Reeves, P.J., Callewaert, N., Contreras, R. & Khorana, H.G. Structure and function in rhodopsin: high-level expression of rhodopsin with restricted and homogeneous N-glycosylation by a tetracycline-inducible N-acetylglucosaminyltransferase I-negative HEK293S stable mammalian cell line. Proc. Natl. Acad. Sci. USA 99, 13419–13424 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chang, V.T. et al. Glycoprotein structural genomics: solving the glycosylation problem. Structure 15, 267–273 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Walter, T.S. et al. A procedure for setting up high-throughput nanolitre crystallization experiments. Crystallization workflow for initial screening, automated storage, imaging and optimization. Acta Crystallogr. D Biol. Crystallogr. 61, 651–657 (2005).

    Article  PubMed  Google Scholar 

  45. Mayo, C.J. et al. Benefits of automated crystallization plate tracking, imaging, and analysis. Structure 13, 175–182 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Leslie, A.G.W. Recent changes to the MOSFLM package for processing film and image plate data. Joint CCP4 + ESF-EAMCB Newsletter on Protein Crystallography 26 (1992).

  47. CCP4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

  48. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  PubMed  Google Scholar 

  49. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    Article  CAS  PubMed  Google Scholar 

  50. Adams, P.D. et al. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D Biol. Crystallogr. 58, 1948–1954 (2002).

    Article  PubMed  Google Scholar 

  51. Davis, I.W. et al. MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res. 35, W375–W383 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Dolinsky, T.J., Nielsen, J.E., McCammon, J.A. & Baker, N.A. PDB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations. Nucleic Acids Res. 32, W665–W667 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Baker, N.A., Sept, D., Joseph, S., Holst, M.J. & McCammon, J.A. Electrostatics of nanosystems: application to microtubules and the ribosome. Proc. Natl. Acad. Sci. USA 98, 10037–10041 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Larkin, M.A. et al. Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Landau, M. et al. ConSurf 2005: the projection of evolutionary conservation scores of residues on protein structures. Nucleic Acids Res. 33, W299–W302 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Krissinel, E. & Henrick, K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774–797 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Gasteiger, E. et al. ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res. 31, 3784–3788 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Malin, S.A., Davis, B.M. & Molliver, D.C. Production of dissociated sensory neuron cultures and considerations for their use in studying neuronal function and plasticity. Nat. Protoc. 2, 152–160 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Kapfhammer, J.P., Xu, H. & Raper, J.A. The detection and quantification of growth cone collapsing activities. Nat. Protoc. 2, 2005–2011 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the staff of Diamond beamlines I02, I03 and I04-1 for assistance with diffraction data collection, Y. Zhao and W. Lu for help with protein expression, T.S. Walter for help with crystallization, G. Sutton for help with multiangle light scattering (MALS) experiments and A.R. Aricescu and D.I. Stuart for critical reading of the manuscript. This work was funded by Cancer Research UK (A10976) and the Medical Research Council (G9900061) to E.Y.J. B.J.C.J. is funded by the Human Frontier Science Program, G.A.W. and M.Z.C. are funded by the Medical Research Council and the John Fell Fund, C.S. is funded by the Wellcome Trust and E.Y.J. is funded by Cancer Research UK (A5261).

Author information

Authors and Affiliations

Authors

Contributions

B.J.C.J., T.M., C.S. and E.Y.J. designed the project. B.J.C.J. and E.Y.J. wrote the manuscript with input from all authors. B.J.C.J. produced the constructs for crystallization and performed MALS, crystallization, diffraction data collection, structure solution and refinement. T.M. and B.J.C.J. cloned and produced constructs for and performed SPR experiments. T.M. did the western blot analysis. T.M. produced proteins for growth cone–collapse assays, which G.A.W. performed under the supervision of M.Z.C.

Corresponding author

Correspondence to E Yvonne Jones.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 (PDF 5023 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janssen, B., Malinauskas, T., Weir, G. et al. Neuropilins lock secreted semaphorins onto plexins in a ternary signaling complex. Nat Struct Mol Biol 19, 1293–1299 (2012). https://doi.org/10.1038/nsmb.2416

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2416

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing