Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Controlling synaptotagmin activity by electrostatic screening

Abstract

Exocytosis of neurosecretory vesicles is mediated by the SNARE (soluble N-ethylmaleimide–sensitive factor attachment protein receptor) proteins syntaxin-1, synaptobrevin and SNAP-25, with synaptotagmin functioning as the major Ca2+ sensor for triggering membrane fusion. Here we show that bovine chromaffin granules readily fuse with large unilamellar liposomes in a SNARE-dependent manner. Fusion is enhanced by Ca2+, but only when the target liposomes contain phosphatidylinositol-4,5-bisphosphate and when polyphosphate anions, such as nucleotides or pyrophosphate, are present. Ca2+-dependent enhancement is mediated by endogenous synaptotagmin-1. Polyphosphates operate by an electrostatic mechanism that reverses an inactivating cis association of synaptotagmin-1 with its own membrane without affecting trans binding. Hence, the balancing of trans- and cis-membrane interactions of synaptotagmin-1 could be a crucial element in the pathway of Ca2+-dependent exocytosis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: SNARE-dependent fusion of CGs with LUVs.
Figure 2: Role of polyphosphates in Ca2+-dependent vesicle fusion as measured by a lipid-mixing assay.
Figure 3: Roles of synaptotagmin-1 and PI(4,5)P2 in Ca2+-dependent enhancement of vesicle fusion.
Figure 4: Effect of ATP on association of synaptotagmin-1 to the vesicle membrane.
Figure 5: Effect of acidic phospholipid concentration in the liposome membrane on Ca2+-dependent binding of synaptotagmin-1.
Figure 6: Effect of polyphosphates on Ca2+-dependent binding of synaptotagmins to membranes containing acidic phospholipids.

References

  1. Augustine, G.J. How does calcium trigger neurotransmitter release? Curr. Opin. Neurobiol. 11, 320–326 (2001).

    Article  CAS  Google Scholar 

  2. De Camilli, P. & Jahn, R. Pathways to regulated exocytosis in neurons. Annu. Rev. Physiol. 52, 625–645 (1990).

    Article  CAS  Google Scholar 

  3. Park, Y. & Kim, K.T. Short-term plasticity of small synaptic vesicle (SSV) and large large dense-core vesicle (LDCV) exocytosis. Cell. Signal. 21, 1465–1470 (2009).

    Article  CAS  Google Scholar 

  4. Neher, E. Vesicle pools and Ca2+ microdomains: new tools for understanding their roles in neurotransmitter release. Neuron 20, 389–399 (1998).

    Article  CAS  Google Scholar 

  5. Neher, E. A comparison between exocytic control mechanisms in adrenal chromaffin cells and a glutamatergic synapse. Pflugers Arch. 453, 261–268 (2006).

    Article  CAS  Google Scholar 

  6. Jahn, R. & Scheller, R.H. SNAREs—engines for membrane fusion. Nat. Rev. Mol. Cell Biol. 7, 631–643 (2006).

    Article  CAS  Google Scholar 

  7. Martens, S. & McMahon, H.T. Mechanisms of membrane fusion: disparate players and common principles. Nat. Rev. Mol. Cell Biol. 9, 543–556 (2008).

    Article  CAS  Google Scholar 

  8. Martin, T.F. The molecular machinery for fast and slow neurosecretion. Curr. Opin. Neurobiol. 4, 626–632 (1994).

    Article  CAS  Google Scholar 

  9. Rizo, J. & Rosenmund, C. Synaptic vesicle fusion. Nat. Struct. Mol. Biol. 15, 665–674 (2008).

    Article  CAS  Google Scholar 

  10. Malsam, J., Kreye, S. & Sollner, T.H. Membrane fusion: SNAREs and regulation. Cell. Mol. Life Sci. 65, 2814–2832 (2008).

    Article  CAS  Google Scholar 

  11. Südhof, T.C. & Rothman, J.E. Membrane fusion: grappling with SNARE and SM proteins. Science 323, 474–477 (2009).

    Article  Google Scholar 

  12. Stein, A., Weber, G., Wahl, M.C. & Jahn, R. Helical extension of the neuronal SNARE complex into the membrane. Nature 460, 525–528 (2009).

    Article  CAS  Google Scholar 

  13. Wiederhold, K. & Fasshauer, D. Is assembly of the SNARE complex enough to fuel membrane fusion? J. Biol. Chem. 284, 13143–13152 (2009).

    Article  CAS  Google Scholar 

  14. Fernandez, I. et al. Three-dimensional structure of the synaptotagmin 1 C2B-domain: synaptotagmin-1 as a phospholipid binding machine. Neuron 32, 1057–1069 (2001).

    Article  CAS  Google Scholar 

  15. Chapman, E.R. How does synaptotagmin trigger neurotransmitter release? Annu. Rev. Biochem. 77, 615–641 (2008).

    Article  CAS  Google Scholar 

  16. Stein, A., Radhakrishnan, A., Riedel, D., Fasshauer, D. & Jahn, R. Synaptotagmin activates membrane fusion through a Ca2+-dependent trans interaction with phospholipids. Nat. Struct. Mol. Biol. 14, 904–911 (2007).

    Article  CAS  Google Scholar 

  17. Vennekate, W. et al. Cis- and trans-membrane interactions of synaptotagmin-1. Proc. Natl. Acad. Sci. USA 109, 11037–11042 (2012).

    Article  CAS  Google Scholar 

  18. Takamori, S. et al. Molecular anatomy of a trafficking organelle. Cell 127, 831–846 (2006).

    Article  CAS  Google Scholar 

  19. Holt, M., Riedel, D., Stein, A., Schuette, C. & Jahn, R. Synaptic vesicles are constitutively active fusion machines that function independently of Ca2+. Curr. Biol. 18, 715–722 (2008).

    Article  CAS  Google Scholar 

  20. Mahal, L.K., Sequeira, S.M., Gureasko, J.M. & Sollner, T.H. Calcium-independent stimulation of membrane fusion and SNAREpin formation by synaptotagmin 1. J. Cell Biol. 158, 273–282 (2002).

    Article  CAS  Google Scholar 

  21. Eaton, B.A., Haugwitz, M., Lau, D. & Moore, H.P. Biogenesis of regulated exocytotic carriers in neuroendocrine cells. J. Neurosci. 20, 7334–7344 (2000).

    Article  CAS  Google Scholar 

  22. Grabner, C.P., Price, S.D., Lysakowski, A. & Fox, A.P. Mouse chromaffin cells have two populations of dense-core vesicles. J. Neurophysiol. 94, 2093–2104 (2005).

    Article  Google Scholar 

  23. Plattner, H., Artalejo, A.R. & Neher, E. Ultrastructural organization of bovine chromaffin cell cortex—analysis by cryofixation and morphometry of aspects pertinent to exocytosis. J. Cell Biol. 139, 1709–1717 (1997).

    Article  CAS  Google Scholar 

  24. Kim, T., Gondre-Lewis, M.C., Arnaoutova, I. & Loh, Y.P. Dense-core secretory granule biogenesis. Physiology (Bethesda) 21, 124–133 (2006).

    CAS  Google Scholar 

  25. Meldolesi, J., Chieregatti, E. & Luisa Malosio, M. Requirements for the identification of dense-core granules. Trends Cell Biol. 14, 13–19 (2004).

    Article  CAS  Google Scholar 

  26. Pobbati, A.V., Stein, A. & Fasshauer, D. N- to C-terminal SNARE complex assembly promotes rapid membrane fusion. Science 313, 673–676 (2006).

    Article  CAS  Google Scholar 

  27. Struck, D.K., Hoekstra, D. & Pagano, R.E. Use of resonance energy transfer to monitor membrane fusion. Biochemistry 20, 4093–4099 (1981).

    Article  CAS  Google Scholar 

  28. Chernomordik, L.V. et al. Lysolipids reversibly inhibit Ca2+-, GTP- and pH-dependent fusion of biological membranes. FEBS Lett. 318, 71–76 (1993).

    Article  CAS  Google Scholar 

  29. Lee, H.K. et al. Dynamic Ca2+-dependent stimulation of vesicle fusion by membrane-anchored synaptotagmin-1. Science 328, 760–763 (2010).

    Article  CAS  Google Scholar 

  30. Davletov, B.A. & Sudhof, T.C. A single C2 domain from synaptotagmin-1 is sufficient for high-affinity Ca2+-phospholipid binding. J. Biol. Chem. 268, 26386–26390 (1993).

    CAS  PubMed  Google Scholar 

  31. Zhang, X., Rizo, J. & Sudhof, T.C. Mechanism of phospholipid binding by the C2A-domain of synaptotagmin-1. Biochemistry 37, 12395–12403 (1998).

    Article  CAS  Google Scholar 

  32. Chapman, E.R. & Jahn, R. Calcium-dependent interaction of the cytoplasmic region of synaptotagmin with membranes. Autonomous function of a single C2-homologous domain. J. Biol. Chem. 269, 5735–5741 (1994).

    CAS  PubMed  Google Scholar 

  33. Di Paolo, G. & De Camilli, P. Phosphoinositides in cell regulation and membrane dynamics. Nature 443, 651–657 (2006).

    Article  CAS  Google Scholar 

  34. Milosevic, I. et al. Plasmalemmal phosphatidylinositol-4,5-bisphosphate level regulates the releasable vesicle pool size in chromaffin cells. J. Neurosci. 25, 2557–2565 (2005).

    Article  CAS  Google Scholar 

  35. Radhakrishnan, A., Stein, A., Jahn, R. & Fasshauer, D. The Ca2+ affinity of synaptotagmin-1 is markedly increased by a specific interaction of its C2B domain with phosphatidylinositol-4,5-bisphosphate. J. Biol. Chem. 284, 25749–25760 (2009).

    Article  CAS  Google Scholar 

  36. van den Bogaart, G. et al. Membrane-protein sequestering by ionic protein-lipid interactions. Nature 479, 552–555 (2011).

    Article  CAS  Google Scholar 

  37. Botelho, R.J., Scott, C.C. & Grinstein, S. Phosphoinositide involvement in phagocytosis and phagosome maturation. Curr. Top. Microbiol. Immunol. 282, 1–30 (2004).

    CAS  PubMed  Google Scholar 

  38. Gillooly, D.J. et al. Localization of phosphatidylinositol-3-phosphate in yeast and mammalian cells. EMBO J. 19, 4577–4588 (2000).

    Article  CAS  Google Scholar 

  39. Lai, Y. & Shin, Y.K. The importance of an asymmetric distribution of acidic lipids for synaptotagmin-1 function as a Ca2+ sensor. Biochem. J. 443, 223–229 (2012).

    Article  CAS  Google Scholar 

  40. Bhalla, A., Chicka, M.C., Tucker, W.C. & Chapman, E.R. Ca2+-synaptotagmin directly regulates t-SNARE function during reconstituted membrane fusion. Nat. Struct. Mol. Biol. 13, 323–330 (2006).

    Article  CAS  Google Scholar 

  41. Kyoung, M. et al. In vitro system capable of differentiating fast Ca2+-triggered content mixing from lipid exchange for mechanistic studies of neurotransmitter release. Proc. Natl. Acad. Sci. USA 108, E304–E313 (2011).

    Article  CAS  Google Scholar 

  42. Wilson, J.E. & Chin, A. Chelation of divalent cations by ATP, studied by titration calorimetry. Anal. Biochem. 193, 16–19 (1991).

    Article  CAS  Google Scholar 

  43. Kuo, W., Herrick, D.Z., Ellena, J.F. & Cafiso, D.S. The calcium-dependent and calcium-independent membrane binding of synaptotagmin-1: two modes of C2B binding. J. Mol. Biol. 387, 284–294 (2009).

    Article  CAS  Google Scholar 

  44. Vrljic, M. et al. Post-translational modifications and lipid-binding profile of insect cell–expressed full-length mammalian synaptotagmin-1. Biochemistry 50, 9998–10012 (2011).

    Article  CAS  Google Scholar 

  45. Li, L. et al. Phosphatidylinositol phosphates as co-activators of Ca2+ binding to C2 domains of synaptotagmin-1. J. Biol. Chem. 281, 15845–15852 (2006).

    Article  CAS  Google Scholar 

  46. Baker, P.F. & Knight, D.E. Calcium-dependent exocytosis in bovine adrenal medullary cells with leaky plasma membranes. Nature 276, 620–622 (1978).

    Article  CAS  Google Scholar 

  47. Barszczewski, M. et al. A novel site of action for α-SNAP in the SNARE conformational cycle controlling membrane fusion. Mol. Biol. Cell 19, 776–784 (2008).

    Article  CAS  Google Scholar 

  48. van den Bogaart, G. et al. Synaptotagmin-1 may be a distance regulator acting upstream of SNARE nucleation. Nat. Struct. Mol. Biol. 18, 805–812 (2011).

    Article  CAS  Google Scholar 

  49. Smith, A.D. & Winkler, H. A simple method for the isolation of adrenal chromaffin granules on a large scale. Biochem. J. 103, 480–482 (1967).

    Article  CAS  Google Scholar 

  50. Li, Y. et al. A single mutation in the recombinant light chain of tetanus toxin abolishes its proteolytic activity and removes the toxicity seen after reconstitution with native heavy chain. Biochemistry 33, 7014–7020 (1994).

    Article  CAS  Google Scholar 

  51. Weber, T. et al. SNAREpins: minimal machinery for membrane fusion. Cell 92, 759–772 (1998).

    Article  CAS  Google Scholar 

  52. Cypionka, A. et al. Discrimination between docking and fusion of liposomes reconstituted with neuronal SNARE proteins using FCS. Proc. Natl. Acad. Sci. USA 106, 18575–18580 (2009).

    Article  CAS  Google Scholar 

  53. Kendall, D.A. & MacDonald, R.C. Characterization of a fluorescence assay to monitor changes in the aqueous volume of lipid vesicles. Anal. Biochem. 134, 26–33 (1983).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are indebted to G. Mieskes (Department of Neurobiology, Max Planck Institute for Biophysical Chemistry) for the arrangement of adrenal glands and logistical assistance. This work was supported by grants from the Alexander von Humboldt Foundation (to Y.P.) and the US National Institutes of Health (2 P01 GM072694-06A1 to R.J.).

Author information

Authors and Affiliations

Authors

Contributions

J.M.H. assisted in the generation of SNARE-containing large unilamellar liposomes and performed the light-scattering experiments. G.v.d.B. provided labeled proteins and assisted in the fluorescence anisotropy experiments. S.A. and M.H. provided purified synaptic vesicles. D.R. performed EM. Y.P. and R.J. designed the study and wrote the paper. Experiments were conducted mainly by Y.P. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Reinhard Jahn.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 (PDF 608 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, Y., Hernandez, J., van den Bogaart, G. et al. Controlling synaptotagmin activity by electrostatic screening. Nat Struct Mol Biol 19, 991–997 (2012). https://doi.org/10.1038/nsmb.2375

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2375

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing