Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

One core, two shells: bacterial and eukaryotic ribosomes

Abstract

Ribosomes are universally conserved enzymes that carry out protein biosynthesis. Bacterial and eukaryotic ribosomes, which share an evolutionarily conserved core, are thought to have evolved from a common ancestor by addition of proteins and RNA that bestow different functionalities to ribosomes from different domains of life. Recently, structures of the eukaryotic ribosome, determined by X-ray crystallography, have allowed us to compare these structures to previously determined structures of bacterial ribosomes. Here we describe selected bacteria- or eukaryote-specific structural features of the ribosome and discuss the functional implications of some of them.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The translation cycle in bacteria and eukaryotes.
Figure 2: Composition of bacterial and eukaryotic ribosomes and the common core.
Figure 3: Bacteria- and eukaryote-specific proteins and RNA expansions of the small ribosomal subunit.
Figure 4: Bacteria- and eukaryote-specific proteins and RNA expansions of the large ribosomal subunit.
Figure 5: Distinctive features of the 80S ribosome structure.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Gruschke, S. & Ott, M. The polypeptide tunnel exit of the mitochondrial ribosome is tailored to meet the specific requirements of the organelle. Bioessays 32, 1050–1057 (2010).

    CAS  PubMed  Google Scholar 

  2. Twiss, J.L. & Fainzilber, M. Ribosomes in axons–scrounging from the neighbors? Trends Cell Biol. 19, 236–243 (2009).

    CAS  PubMed  Google Scholar 

  3. Ban, N., Nissen, P., Hansen, J., Moore, P.B. & Steitz, T.A. The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. Science 289, 905–920 (2000).

    CAS  PubMed  Google Scholar 

  4. Wimberly, B.T. et al. Structure of the 30S ribosomal subunit. Nature 407, 327–339 (2000).

    CAS  PubMed  Google Scholar 

  5. Yusupov, M.M. et al. Crystal structure of the ribosome at 5.5 A resolution. Science 292, 883–896 (2001).

    CAS  PubMed  Google Scholar 

  6. Harms, J. et al. High resolution structure of the large ribosomal subunit from a mesophilic eubacterium. Cell 107, 679–688 (2001).

    CAS  PubMed  Google Scholar 

  7. Selmer, M. et al. Structure of the 70S ribosome complexed with mRNA and tRNA. Science 313, 1935–1942 (2006).

    CAS  PubMed  Google Scholar 

  8. Schuwirth, B.S. et al. Structures of the bacterial ribosome at 3.5 A resolution. Science 310, 827–834 (2005).

    CAS  PubMed  Google Scholar 

  9. Dube, P. et al. Correlation of the expansion segments in mammalian rRNA with the fine structure of the 80 S ribosome; a cryoelectron microscopic reconstruction of the rabbit reticulocyte ribosome at 21 A resolution. J. Mol. Biol. 279, 403–421 (1998).

    CAS  PubMed  Google Scholar 

  10. Spahn, C.M. et al. Structure of the 80S ribosome from Saccharomyces cerevisiae—tRNA-ribosome and subunit-subunit interactions. Cell 107, 373–386 (2001). Reports a 15-Å resolution map of yeast ribosome, providing the first structural comparison between bacterial and eukaryotic ribosomes.

    CAS  PubMed  Google Scholar 

  11. Sengupta, J. et al. Identification of the versatile scaffold protein RACK1 on the eukaryotic ribosome by cryo-EM. Nat. Struct. Mol. Biol. 11, 957–962 (2004).

    CAS  PubMed  Google Scholar 

  12. Halic, M., Becker, T., Frank, J., Spahn, C.M. & Beckmann, R. Localization and dynamic behavior of ribosomal protein L30e. Nat. Struct. Mol. Biol. 12, 467–468 (2005).

    CAS  PubMed  Google Scholar 

  13. Chandramouli, P. et al. Structure of the mammalian 80S ribosome at 8.7 A resolution. Structure 16, 535–548 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Taylor, D.J. et al. Comprehensive molecular structure of the eukaryotic ribosome. Structure 17, 1591–1604 (2009). Summarizes advances in eukaryotic ribosome modeling over almost a decade.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Armache, J.P. et al. Cryo-EM structure and rRNA model of a translating eukaryotic 80S ribosome at 5.5-A resolution. Proc. Natl. Acad. Sci. USA 107, 19748–19753 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Armache, J.P. et al. Localization of eukaryote-specific ribosomal proteins in a 5.5-A cryo-EM map of the 80S eukaryotic ribosome. Proc. Natl. Acad. Sci. USA 107, 19754–19759 (2010).References 15 and 16 describe several principles of evolution of the 80S ribosome, show co-evolution of rRNA and proteins and changes in the functional centers of the ribosome, and describe the behavior of dynamic RNA expansions.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Balagopal, V. & Parker, R. Stm1 modulates translation after 80S formation in Saccharomyces cerevisiae. RNA 17, 835–842 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Rabl, J., Leibundgut, M., Ataide, S.F., Haag, A. & Ban, N. Crystal structure of the eukaryotic 40S ribosomal subunit in complex with initiation factor 1. Science 331, 730–736 (2011).The X-ray structure of the small ribosomal subunit from T. thermophila reports the location and architecture of eukaryote-specific proteins and rRNA expansions.

    CAS  PubMed  Google Scholar 

  19. Klinge, S., Voigts-Hoffmann, F., Leibundgut, M., Arpagaus, S. & Ban, N. Crystal structure of the eukaryotic 60S ribosomal subunit in complex with initiation factor 6. Science 334, 941–948 (2011). The X-ray structure of the large ribosomal subunit from T. thermophila reports the location and architecture of eukaryote-specific proteins and rRNA expansions.

    CAS  PubMed  Google Scholar 

  20. Ben-Shem, A. et al. The structure of the eukaryotic ribosome at 3.0 A resolution. Science 334, 1524–1529 (2011). X-ray structure of the complete 80S ribosome from S. cerevisiae reports the precise location, architecture and registry of all eukaryote-specific proteins and almost all eukaryote-specific rRNA moieties, and describes interactions between ribosomal subunits.

    CAS  PubMed  Google Scholar 

  21. Ye, Y. & Godzik, A. Flexible structure alignment by chaining aligned fragment pairs allowing twists. Bioinformatics 19 (suppl. 2), ii246–ii255 (2003).

    PubMed  Google Scholar 

  22. Tu, D., Blaha, G., Moore, P.B. & Steitz, T.A. Structures of MLSBK antibiotics bound to mutated large ribosomal subunits provide a structural explanation for resistance. Cell 121, 257–270 (2005).

    CAS  PubMed  Google Scholar 

  23. Smith, T.F., Lee, J.C., Gutell, R.R. & Hartman, H. The origin and evolution of the ribosome. Biol. Direct 3, 16 (2008).

    PubMed  PubMed Central  Google Scholar 

  24. Lecompte, O., Ripp, R., Thierry, J.C., Moras, D. & Poch, O. Comparative analysis of ribosomal proteins in complete genomes: an example of reductive evolution at the domain scale. Nucleic Acids Res. 30, 5382–5390 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Gerbi, S.A. The evolution of eukaryotic ribosomal DNA. Biosystems 19, 247–258 (1986).

    CAS  PubMed  Google Scholar 

  26. Shasmal, M. & Sengupta, J. Structural diversity in bacterial ribosomes: mycobacterial 70S ribosome structure reveals novel features. PLoS ONE 7, e31742 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Gao, H., Ayub, M.J., Levin, M.J. & Frank, J. The structure of the 80S ribosome from Trypanosoma cruzi reveals unique rRNA components. Proc. Natl. Acad. Sci. USA 102, 10206–10211 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Forster, A.C. & Church, G.M. Towards synthesis of a minimal cell. Mol. Syst. Biol. 2, 45 (2006).

    PubMed  PubMed Central  Google Scholar 

  29. McIntosh, K.B. & Warner, J.R. Yeast ribosomes: variety is the spice of life. Cell 131, 450–451 (2007).

    CAS  PubMed  Google Scholar 

  30. Gilbert, W.V. Functional specialization of ribosomes? Trends Biochem. Sci. 36, 127–132 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Vesper, O. et al. Selective translation of leaderless mRNAs by specialized ribosomes generated by MazF in Escherichia coli. Cell 147, 147–157 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Sato, N., Tachikawa, T., Wada, A. & Tanaka, A. Temperature-dependent regulation of the ribosomal small-subunit protein S21 in the cyanobacterium Anabaena variabilis M3. J. Bacteriol. 179, 7063–7071 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Forget, B.G. & Jordan, B. 5S RNA synthesized by Escherichia coli in presence of chloramphenicol: different 5′-terminal sequences. Science 167, 382–384 (1970).

    CAS  PubMed  Google Scholar 

  34. Panina, E.M., Mironov, A.A. & Gelfand, M.S. Comparative genomics of bacterial zinc regulons: enhanced ion transport, pathogenesis, and rearrangement of ribosomal proteins. Proc. Natl. Acad. Sci. USA 100, 9912–9917 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Nanamiya, H. et al. Zinc is a key factor in controlling alternation of two types of L31 protein in the Bacillus subtilis ribosome. Mol. Microbiol. 52, 273–283 (2004).

    CAS  PubMed  Google Scholar 

  36. Gunderson, J.H. et al. Structurally distinct, stage-specific ribosomes occur in Plasmodium. Science 238, 933–937 (1987).

    CAS  PubMed  Google Scholar 

  37. Yusupova, G.Z., Yusupov, M.M., Cate, J.H. & Noller, H.F. The path of messenger RNA through the ribosome. Cell 106, 233–241 (2001).

    CAS  PubMed  Google Scholar 

  38. Jenner, L.B., Demeshkina, N., Yusupova, G. & Yusupov, M. Structural aspects of messenger RNA reading frame maintenance by the ribosome. Nat. Struct. Mol. Biol. 17, 555–560 (2010).

    CAS  PubMed  Google Scholar 

  39. Shine, J. & Dalgarno, L. The 3′-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites. Proc. Natl. Acad. Sci. USA 71, 1342–1346 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Yusupova, G., Jenner, L., Rees, B., Moras, D. & Yusupov, M. Structural basis for messenger RNA movement on the ribosome. Nature 444, 391–394 (2006).

    CAS  PubMed  Google Scholar 

  41. Kaminishi, T. et al. A snapshot of the 30S ribosomal subunit capturing mRNA via the Shine-Dalgarno interaction. Structure 15, 289–297 (2007).

    CAS  PubMed  Google Scholar 

  42. Korostelev, A. et al. Interactions and dynamics of the Shine Dalgarno helix in the 70S ribosome. Proc. Natl. Acad. Sci. USA 104, 16840–16843 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Hajnsdorf, E. & Boni, I.V. Multiple activities of RNA-binding proteins S1 and Hfq. Biochimie published online, doi:10.1016/j.biochi.2012.02.010 (18 February 2012).

  44. Sengupta, J., Agrawal, R.K. & Frank, J. Visualization of protein S1 within the 30S ribosomal subunit and its interaction with messenger RNA. Proc. Natl. Acad. Sci. USA 98, 11991–11996 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Tolan, D.R., Hershey, J.W. & Traut, R.T. Crosslinking of eukaryotic initiation factor eIF3 to the 40S ribosomal subunit from rabbit reticulocytes. Biochimie 65, 427–436 (1983).

    CAS  PubMed  Google Scholar 

  46. Siridechadilok, B., Fraser, C.S., Hall, R.J., Doudna, J.A. & Nogales, E. Structural roles for human translation factor eIF3 in initiation of protein synthesis. Science 310, 1513–1515 (2005).

    CAS  PubMed  Google Scholar 

  47. Yu, Y., Abaeva, I.S., Marintchev, A., Pestova, T.V. & Hellen, C.U. Common conformational changes induced in type 2 picornavirus IRESs by cognate trans-acting factors. Nucleic Acids Res. 39, 4851–4865 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Jackson, R.J., Hellen, C.U. & Pestova, T.V. The mechanism of eukaryotic translation initiation and principles of its regulation. Nat. Rev. Mol. Cell Biol. 11, 113–127 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Echeverría Aitken, C. & Lorsch, J.R. A mechanistic overview of translation initiation in eukaryotes. Nat. Struct. Mol. Biol. 19, 568–576 (2012).The reviews in references 48 and 49 summarize eukaryote-specific aspects of translation initiation.

    Google Scholar 

  50. Passmore, L.A. et al. The eukaryotic translation initiation factors eIF1 and eIF1A induce an open conformation of the 40S ribosome. Mol. Cell 26, 41–50 (2007).

    CAS  PubMed  Google Scholar 

  51. Zaman, S., Fitzpatrick, M., Lindahl, L. & Zengel, J. Novel mutations in ribosomal proteins L4 and L22 that confer erythromycin resistance in Escherichia coli. Mol. Microbiol. 66, 1039–1050 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Bingel-Erlenmeyer, R. et al. A peptide deformylase-ribosome complex reveals mechanism of nascent chain processing. Nature 452, 108–111 (2008).

    CAS  PubMed  Google Scholar 

  53. Peisker, K. et al. Ribosome-associated complex binds to ribosomes in close proximity of Rpl31 at the exit of the polypeptide tunnel in yeast. Mol. Biol. Cell 19, 5279–5288 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Ben-Shem, A., Jenner, L., Yusupova, G. & Yusupov, M. Crystal structure of the eukaryotic ribosome. Science 330, 1203–1209 (2010).The first X-ray structure of a eukaryotic ( S. cerevisiae ) ribosome.

    CAS  PubMed  Google Scholar 

  55. Jenner, L., Demeshkina, N., Yusupova, G. & Yusupov, M. Structural rearrangements of the ribosome at the tRNA proofreading step. Nat. Struct. Mol. Biol. 17, 1072–1078 (2010).

    CAS  PubMed  Google Scholar 

  56. Thiébeauld, O. et al. A new plant protein interacts with eIF3 and 60S to enhance virus-activated translation re-initiation. EMBO J. 28, 3171–3184 (2009).

    PubMed  PubMed Central  Google Scholar 

  57. Park, H.S., Himmelbach, A., Browning, K.S., Hohn, T. & Ryabova, L.A. A plant viral 'reinitiation' factor interacts with the host translational machinery. Cell 106, 723–733 (2001).

    CAS  PubMed  Google Scholar 

  58. Nishimura, T., Wada, T. & Okada, K. A key factor of translation reinitiation, ribosomal protein L24, is involved in gynoecium development in Arabidopsis. Biochem. Soc. Trans. 32, 611–613 (2004).

    CAS  PubMed  Google Scholar 

  59. Finley, D., Bartel, B. & Varshavsky, A. The tails of ubiquitin precursors are ribosomal proteins whose fusion to ubiquitin facilitates ribosome biogenesis. Nature 338, 394–401 (1989).

    CAS  PubMed  Google Scholar 

  60. Panse, V.G. & Johnson, A.W. Maturation of eukaryotic ribosomes: acquisition of functionality. Trends Biochem. Sci. 35, 260–266 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Karbstein, K. Inside the 40S ribosome assembly machinery. Curr. Opin. Chem. Biol. 15, 657–663 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Klein, D.J., Moore, P.B. & Steitz, T.A. The roles of ribosomal proteins in the structure assembly, and evolution of the large ribosomal subunit. J. Mol. Biol. 340, 141–177 (2004).

    CAS  PubMed  Google Scholar 

  63. Timsit, Y., Acosta, Z., Allemand, F., Chiaruttini, C. & Springer, M. The role of disordered ribosomal protein extensions in the early steps of eubacterial 50 S ribosomal subunit assembly. Int. J. Mol. Sci. 10, 817–834 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Pomeranz Krummel, D.A., Oubridge, C., Leung, A.K., Li, J. & Nagai, K. Crystal structure of human spliceosomal U1 snRNP at 5.5 A resolution. Nature 458, 475–480 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Houge, G. et al. Fine mapping of 28S rRNA sites specifically cleaved in cells undergoing apoptosis. Mol. Cell. Biol. 15, 2051–2062 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Houge, G., Doskeland, S.O., Boe, R. & Lanotte, M. Selective cleavage of 28S rRNA variable regions V3 and V13 in myeloid leukemia cell apoptosis. FEBS Lett. 315, 16–20 (1993).

    CAS  PubMed  Google Scholar 

  67. Sweeney, R., Chen, L. & Yao, M.C. An rRNA variable region has an evolutionarily conserved essential role despite sequence divergence. Mol. Cell. Biol. 14, 4203–4215 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Beckmann, R. et al. Architecture of the protein-conducting channel associated with the translating 80S ribosome. Cell 107, 361–372 (2001).

    CAS  PubMed  Google Scholar 

  69. Kondrashov, N. et al. Ribosome-mediated specificity in Hox mRNA translation and vertebrate tissue patterning. Cell 145, 383–397 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Strunk, B.S. et al. Ribosome assembly factors prevent premature translation initiation by 40S assembly intermediates. Science 333, 1449–1453 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Fitzgerald, K.D. & Semler, B.L. Bridging IRES elements in mRNAs to the eukaryotic translation apparatus. Biochim. Biophys. Acta 1789, 518–528 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Lorsch, J.R. & Dever, T.E. Molecular view of 43 S complex formation and start site selection in eukaryotic translation initiation. J. Biol. Chem. 285, 21203–21207 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Acker, M.G. & Lorsch, J.R. Mechanism of ribosomal subunit joining during eukaryotic translation initiation. Biochem. Soc. Trans. 36, 653–657 (2008).

    CAS  PubMed  Google Scholar 

  74. Bengtson, M.H. & Joazeiro, C.A. Role of a ribosome-associated E3 ubiquitin ligase in protein quality control. Nature 467, 470–473 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Bokov, K. & Steinberg, S.V. A hierarchical model for evolution of 23S ribosomal RNA. Nature 457, 977–980 (2009).

    CAS  PubMed  Google Scholar 

  76. Balagopal, V. & Parker, R. Stm1 modulates mRNA decay and Dhh1 function in Saccharomyces cerevisiae. Genetics 181, 93–103 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Warner, J.R. The economics of ribosome biosynthesis in yeast. Trends Biochem. Sci. 24, 437–440 (1999).

    CAS  PubMed  Google Scholar 

  78. Strunk, B.S. & Karbstein, K. Powering through ribosome assembly. RNA 15, 2083–2104 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Wilson, D.N. & Beckmann, R. The ribosomal tunnel as a functional environment for nascent polypeptide folding and translational stalling. Curr. Opin. Struct. Biol. 21, 274–282 (2011).

    CAS  PubMed  Google Scholar 

  80. Brandt, F., Carlson, L.A., Hartl, F.U., Baumeister, W. & Grunewald, K. The three-dimensional organization of polyribosomes in intact human cells. Mol. Cell 39, 560–569 (2010).

    CAS  PubMed  Google Scholar 

  81. Brandt, F. et al. The native 3D organization of bacterial polysomes. Cell 136, 261–271 (2009).

    CAS  PubMed  Google Scholar 

  82. Dunkle, J.A. et al. Structures of the bacterial ribosome in classical and hybrid states of tRNA binding. Science 332, 981–984 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Spahn, C.M. et al. Cryo-EM visualization of a viral internal ribosome entry site bound to human ribosomes: the IRES functions as an RNA-based translation factor. Cell 118, 465–475 (2004).

    CAS  PubMed  Google Scholar 

  84. Jarasch, A. et al. The DARC site: a database of aligned ribosomal complexes. Nucleic Acids Res. 40, D495–D500 (2012). The paper describes a recently constructed publicly available database of all existing structures of ribosomes; all structures are aligned, and coordinates are available to download in Protein Data Bank (pdb) format.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors apologize for not citing all relevant articles, owing to length restrictions. Work in the author's laboratory was supported by the Foundation for Medical Research Foundation in France, FRM (S.M.), a Molecular Biology Organization Long-Term Fellowship (A.B.-S.), Human Frontier Science Program, French National Research Agency grants ANR BLAN-07-3-190451 and ANR-0-PCVI-0015-01, and European Commission SPINE-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marat Yusupov.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1 and 2 and Supplementary Table 1 (PDF 687 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melnikov, S., Ben-Shem, A., Garreau de Loubresse, N. et al. One core, two shells: bacterial and eukaryotic ribosomes. Nat Struct Mol Biol 19, 560–567 (2012). https://doi.org/10.1038/nsmb.2313

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2313

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology