Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Translation drives mRNA quality control

Abstract

There are three predominant forms of co-translational mRNA surveillance: nonsense-mediated decay (NMD), no-go decay (NGD) and nonstop decay (NSD). Although discussion of these pathways often focuses on mRNA fate, there is growing consensus that there are other important outcomes of these processes that must be simultaneously considered. Here, we seek to highlight similarities between NMD, NGD and NSD and their probable origins on the ribosome during translation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Recognition of NMD surveillance targets.
Figure 2: Recognition and initiation of NGD and NSD.
Figure 3: mRNA surveillance pathway outcomes.

Similar content being viewed by others

References

  1. Isken, O. & Maquat, L.E. Quality control of eukaryotic mRNA: safeguarding cells from abnormal mRNA function. Genes Dev. 21, 1833–1856 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Wilson, M.A., Meaux, S. & van Hoof, A. Diverse aberrancies target yeast mRNAs to cytoplasmic mRNA surveillance pathways. Biochim. Biophys. Acta 1779, 550–557 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Le Hir, H., Izaurralde, E., Maquat, L.E. & Moore, M.J. The spliceosome deposits multiple proteins 20–24 nucleotides upstream of mRNA exon-exon junctions. EMBO J. 19, 6860–6869 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Maquat, L.E. & Li, X. Mammalian heat shock p70 and histone H4 transcripts, which derive from naturally intronless genes, are immune to nonsense-mediated decay. RNA 7, 445–456 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Maquat, L.E., Tarn, W.Y. & Isken, O. The pioneer round of translation: features and functions. Cell 142, 368–374 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Singh, G., Rebbapragada, I. & Lykke-Andersen, J. A competition between stimulators and antagonists of Upf complex recruitment governs human nonsense-mediated mRNA decay. PLoS Biol. 6, e111 (2008).

    PubMed  PubMed Central  Google Scholar 

  7. Amrani, N. et al. A faux 3′-UTR promotes aberrant termination and triggers nonsense-mediated mRNA decay. Nature 432, 112–118 (2004).

    CAS  PubMed  Google Scholar 

  8. Hogg, J.R. & Goff, S.P. Upf1 senses 3′UTR length to potentiate mRNA decay. Cell 143, 379–389 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Muhlrad, D. & Parker, R. Aberrant mRNAs with extended 3′ UTRs are substrates for rapid degradation by mRNA surveillance. RNA 5, 1299–1307 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Meaux, S., van Hoof, A. & Baker, K.E. Nonsense-mediated mRNA decay in yeast does not require PAB1 or a poly(A) tail. Mol. Cell 29, 134–140 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Kervestin, S., Li, C., Buckingham, R. & Jacobson, A. Testing the faux-UTR model for NMD: analysis of Upf1p and Pab1p competition for binding to eRF3/Sup35p. Biochimie published online, doi:10.1016/j.biochi.2011.12.021 (2 January 2012).

  12. Doma, M.K. & Parker, R. Endonucleolytic cleavage of eukaryotic mRNAs with stalls in translation elongation. Nature 440, 561–564 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Gandhi, R., Manzoor, M. & Hudak, K.A. Depurination of Brome mosaic virus RNA3 in vivo results in translation-dependent accelerated degradation of the viral RNA. J. Biol. Chem. 283, 32218–32228 (2008).

    CAS  PubMed  Google Scholar 

  14. Letzring, D.P., Dean, K.M. & Grayhack, E.J. Control of translation efficiency in yeast by codon-anticodon interactions. RNA 16, 2516–2528 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Kuroha, K. et al. Receptor for activated C kinase 1 stimulates nascent polypeptide-dependent translation arrest. EMBO Rep. 11, 956–961 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Ingolia, N.T., Lareau, L.F. & Weissman, J.S. Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes. Cell 147, 789–802 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Tanner, D.R., Cariello, D.A., Woolstenhulme, C.J., Broadbent, M.A. & Buskirk, A.R. Genetic identification of nascent peptides that induce ribosome stalling. J. Biol. Chem. 284, 34809–34818 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Frischmeyer, P.A. et al. An mRNA surveillance mechanism that eliminates transcripts lacking termination codons. Science 295, 2258–2261 (2002).

    CAS  PubMed  Google Scholar 

  19. van Hoof, A., Frischmeyer, P.A., Dietz, H.C. & Parker, R. Exosome-mediated recognition and degradation of mRNAs lacking a termination codon. Science 295, 2262–2264 (2002).

    CAS  PubMed  Google Scholar 

  20. Ito-Harashima, S., Kuroha, K., Tatematsu, T. & Inada, T. Translation of the poly(A) tail plays crucial roles in nonstop mRNA surveillance via translation repression and protein destabilization by proteasome in yeast. Genes Dev. 21, 519–524 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Lu, J. & Deutsch, C. Electrostatics in the ribosomal tunnel modulate chain elongation rates. J. Mol. Biol. 384, 73–86 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Eckmann, C.R., Rammelt, C. & Wahle, E. Control of poly(A) tail length. Wiley Interdiscip. Rev. RNA 2, 348–361 (2011).

    CAS  PubMed  Google Scholar 

  23. Smith, M.H., Ploegh, H.L. & Weissman, J.S. Road to ruin: targeting proteins for degradation in the endoplasmic reticulum. Science 334, 1086–1090 (2011).

    CAS  PubMed  Google Scholar 

  24. Cui, Y., Hagan, K.W., Zhang, S. & Peltz, S.W. Identification and characterization of genes that are required for the accelerated degradation of mRNAs containing a premature translational termination codon. Genes Dev. 9, 423–436 (1995).

    CAS  PubMed  Google Scholar 

  25. Leeds, P., Peltz, S.W., Jacobson, A. & Culbertson, M.R. The product of the yeast UPF1 gene is required for rapid turnover of mRNAs containing a premature translational termination codon. Genes Dev. 5, 2303–2314 (1991).

    CAS  PubMed  Google Scholar 

  26. Leeds, P., Wood, J.M., Lee, B.S. & Culbertson, M.R. Gene products that promote mRNA turnover in Saccharomyces cerevisiae. Mol. Cell Biol. 12, 2165–2177 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Peltz, S.W., Brown, A.H. & Jacobson, A. mRNA destabilization triggered by premature translational termination depends on at least three cis-acting sequence elements and one trans-acting factor. Genes Dev. 7, 1737–1754 (1993).

    CAS  PubMed  Google Scholar 

  28. Conti, E. & Izaurralde, E. Nonsense-mediated mRNA decay: molecular insights and mechanistic variations across species. Curr. Opin. Cell Biol. 17, 316–325 (2005).

    CAS  PubMed  Google Scholar 

  29. Czaplinski, K., Weng, Y., Hagan, K.W. & Peltz, S.W. Purification and characterization of the Upf1 protein: a factor involved in translation and mRNA degradation. RNA 1, 610–623 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Weng, Y., Czaplinski, K. & Peltz, S.W. Genetic and biochemical characterization of mutations in the ATPase and helicase regions of the Upf1 protein. Mol. Cell Biol. 16, 5477–5490 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Czaplinski, K. et al. The surveillance complex interacts with the translation release factors to enhance termination and degrade aberrant mRNAs. Genes Dev. 12, 1665–1677 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Kashima, I. et al. Binding of a novel SMG-1–Upf1–eRF1–eRF3 complex (SURF) to the exon junction complex triggers Upf1 phosphorylation and nonsense-mediated mRNA decay. Genes Dev. 20, 355–367 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. He, F., Brown, A.H. & Jacobson, A. Upf1p, Nmd2p, and Upf3p are interacting components of the yeast nonsense-mediated mRNA decay pathway. Mol. Cell Biol. 17, 1580–1594 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Chakrabarti, S. et al. Molecular mechanisms for the RNA-dependent ATPase activity of Upf1 and its regulation by Upf2. Mol. Cell 41, 693–703 (2011).

    CAS  PubMed  Google Scholar 

  35. Chamieh, H., Ballut, L., Bonneau, F. & Le Hir, H. NMD factors UPF2 and UPF3 bridge UPF1 to the exon junction complex and stimulate its RNA helicase activity. Nat. Struct. Mol. Biol. 15, 85–93 (2008).

    CAS  PubMed  Google Scholar 

  36. Takahashi, S. et al. Upf1 potentially serves as a RING-related E3 ubiquitin ligase via its association with Upf3 in yeast. RNA 14, 1950–1958 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Chang, Y.F., Imam, J.S. & Wilkinson, M.F. The nonsense-mediated decay RNA surveillance pathway. Annu. Rev. Biochem. 76, 51–74 (2007).

    CAS  PubMed  Google Scholar 

  38. Lykke-Andersen, J., Shu, M.D. & Steitz, J.A. Human Upf proteins target an mRNA for nonsense-mediated decay when bound downstream of a termination codon. Cell 103, 1121–1131 (2000).

    CAS  PubMed  Google Scholar 

  39. Ghosh, S., Ganesan, R., Amrani, N. & Jacobson, A. Translational competence of ribosomes released from a premature termination codon is modulated by NMD factors. RNA 16, 1832–1847 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Atkinson, G.C., Baldauf, S.L. & Hauryliuk, V. Evolution of nonstop, no-go and nonsense-mediated mRNA decay and their termination factor-derived components. BMC Evol. Biol. 8, 290 (2008).

    PubMed  PubMed Central  Google Scholar 

  41. Chen, L. et al. Structure of the Dom34–Hbs1 complex and implications for no-go decay. Nat. Struct. Mol. Biol. 17, 1233–1240 (2010).

    CAS  PubMed  Google Scholar 

  42. Graille, M., Chaillet, M. & van Tilbeurgh, H. Structure of yeast Dom34: a protein related to translation termination factor Erf1 and involved in No-Go decay. J. Biol. Chem. 283, 7145–7154 (2008).

    CAS  PubMed  Google Scholar 

  43. Kobayashi, K. et al. Structural basis for mRNA surveillance by archaeal Pelota and GTP-bound EF1α complex. Proc. Natl. Acad. Sci. USA 107, 17575–17579 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Lee, H.H. et al. Structural and functional insights into Dom34, a key component of no-go mRNA decay. Mol. Cell 27, 938–950 (2007).

    CAS  PubMed  Google Scholar 

  45. van den Elzen, A.M. et al. Dissection of Dom34–Hbs1 reveals independent functions in two RNA quality control pathways. Nat. Struct. Mol. Biol. 17, 1446–1452 (2010).

    CAS  PubMed  Google Scholar 

  46. Becker, T. et al. Structure of the no-go mRNA decay complex Dom34–Hbs1 bound to a stalled 80S ribosome. Nat. Struct. Mol. Biol. 18, 715–720 (2011).

    CAS  PubMed  Google Scholar 

  47. Shoemaker, C.J., Eyler, D.E. & Green, R. Dom34:Hbs1 promotes subunit dissociation and peptidyl-tRNA drop-off to initiate no-go decay. Science 330, 369–372 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Passos, D.O. et al. Analysis of Dom34 and its function in no-go decay. Mol. Biol. Cell 20, 3025–3032 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Pisareva, V.P., Skabkin, M.A., Hellen, C.U., Pestova, T.V. & Pisarev, A.V. Dissociation by Pelota, Hbs1 and ABCE1 of mammalian vacant 80S ribosomes and stalled elongation complexes. EMBO J. 30, 1804–1817 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Shoemaker, C.J. & Green, R. Kinetic analysis reveals the ordered coupling of translation termination and ribosome recycling in yeast. Proc. Natl. Acad. Sci. USA 108, E1392–E1398 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Gagnon, M.G., Seetharaman, S.V., Bulkley, D. & Steitz, T.A. Structural basis for the rescue of stalled ribosomes: structure of YaeJ bound to the ribosome. Science 335, 1370–1372 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Neubauer, C., Gillet, R., Kelley, A.C. & Ramakrishnan, V. Decoding in the absence of a codon by tmRNA and SmpB in the ribosome. Science 335, 1366–1369 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. van Hoof, A. Conserved functions of yeast genes support the duplication, degeneration and complementation model for gene duplication. Genetics 171, 1455–1461 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Tsuboi, T. et al. Dom34:Hbs1 plays a general role in quality-control systems by dissociation of a stalled ribosome at the 3′ end of aberrant mRNA. Mol. Cell published online, doi:10.1016/j.molcel.2012.03.013 (11 April 2012).

  55. Anderson, J.S. & Parker, R.P. The 3′ to 5′ degradation of yeast mRNAs is a general mechanism for mRNA turnover that requires the SKI2 DEVH box protein and 3′ to 5′ exonucleases of the exosome complex. EMBO J. 17, 1497–1506 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Muhlrad, D., Decker, C.J. & Parker, R. Turnover mechanisms of the stable yeast PGK1 mRNA. Mol. Cell Biol. 15, 2145–2156 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Mitchell, P. & Tollervey, D. An NMD pathway in yeast involving accelerated deadenylation and exosome-mediated 3′→5′ degradation. Mol. Cell 11, 1405–1413 (2003).

    CAS  PubMed  Google Scholar 

  58. Muhlrad, D. & Parker, R. Premature translational termination triggers mRNA decapping. Nature 370, 578–581 (1994).

    CAS  PubMed  Google Scholar 

  59. Lejeune, F., Li, X. & Maquat, L.E. Nonsense-mediated mRNA decay in mammalian cells involves decapping, deadenylating, and exonucleolytic activities. Mol. Cell 12, 675–687 (2003).

    CAS  PubMed  Google Scholar 

  60. Lykke-Andersen, J. Identification of a human decapping complex associated with hUpf proteins in nonsense-mediated decay. Mol. Cell Biol. 22, 8114–8121 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Unterholzner, L. & Izaurralde, E. SMG7 acts as a molecular link between mRNA surveillance and mRNA decay. Mol. Cell 16, 587–596 (2004).

    CAS  PubMed  Google Scholar 

  62. Eberle, A.B., Lykke-Andersen, S., Muhlemann, O. & Jensen, T.H. SMG6 promotes endonucleolytic cleavage of nonsense mRNA in human cells. Nat. Struct. Mol. Biol. 16, 49–55 (2009).

    CAS  PubMed  Google Scholar 

  63. Gatfield, D. & Izaurralde, E. Nonsense-mediated messenger RNA decay is initiated by endonucleolytic cleavage in Drosophila. Nature 429, 575–578 (2004).

    CAS  PubMed  Google Scholar 

  64. Huntzinger, E., Kashima, I., Fauser, M., Sauliere, J. & Izaurralde, E. SMG6 is the catalytic endonuclease that cleaves mRNAs containing nonsense codons in metazoan. RNA 14, 2609–2617 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Schaeffer, D. et al. The exosome contains domains with specific endoribonuclease, exoribonuclease and cytoplasmic mRNA decay activities. Nat. Struct. Mol. Biol. 16, 56–62 (2009).

    CAS  PubMed  Google Scholar 

  66. Schaeffer, D. & van Hoof, A. Different nuclease requirements for exosome-mediated degradation of normal and nonstop mRNAs. Proc. Natl. Acad. Sci. USA 108, 2366–2371 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Kuroha, K., Tatematsu, T. & Inada, T. Upf1 stimulates degradation of the product derived from aberrant messenger RNA containing a specific nonsense mutation by the proteasome. EMBO Rep. 10, 1265–1271 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Wilson, M.A., Meaux, S. & van Hoof, A. A genomic screen in yeast reveals novel aspects of nonstop mRNA metabolism. Genetics 177, 773–784 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Bengtson, M.H. & Joazeiro, C.A. Role of a ribosome-associated E3 ubiquitin ligase in protein quality control. Nature 467, 470–473 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Dimitrova, L.N., Kuroha, K., Tatematsu, T. & Inada, T. Nascent peptide-dependent translation arrest leads to Not4p-mediated protein degradation by the proteasome. J. Biol. Chem. 284, 10343–10352 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Barthelme, D. et al. Ribosome recycling depends on a mechanistic link between the FeS cluster domain and a conformational switch of the twin-ATPase ABCE1. Proc. Natl. Acad. Sci. USA 108, 3228–3233 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Pisarev, A.V. et al. The role of ABCE1 in eukaryotic posttermination ribosomal recycling. Mol. Cell 37, 196–210 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Becker, T. et al. Structural basis of highly conserved ribosome recycling in eukaryotes and archaea. Nature 482, 501–506 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Bhattacharya, A., McIntosh, K.B., Willis, I.M. & Warner, J.R. Why Dom34 stimulates growth of cells with defects of 40S ribosomal subunit biosynthesis. Mol. Cell Biol. 30, 5562–5571 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Cole, S.E., LaRiviere, F.J., Merrikh, C.N. & Moore, M.J. A convergence of rRNA and mRNA quality control pathways revealed by mechanistic analysis of nonfunctional rRNA decay. Mol. Cell 34, 440–450 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. LaRiviere, F.J., Cole, S.E., Ferullo, D.J. & Moore, M.J. A late-acting quality control process for mature eukaryotic rRNAs. Mol. Cell 24, 619–626 (2006).

    CAS  PubMed  Google Scholar 

  77. He, F. et al. Genome-wide analysis of mRNAs regulated by the nonsense-mediated and 5′ to 3′ mRNA decay pathways in yeast. Mol. Cell 12, 1439–1452 (2003).

    CAS  PubMed  Google Scholar 

  78. Lelivelt, M.J. & Culbertson, M.R. Yeast Upf proteins required for RNA surveillance affect global expression of the yeast transcriptome. Mol. Cell Biol. 19, 6710–6719 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Mendell, J.T., Sharifi, N.A., Meyers, J.L., Martinez-Murillo, F. & Dietz, H.C. Nonsense surveillance regulates expression of diverse classes of mammalian transcripts and mutes genomic noise. Nat. Genet. 36, 1073–1078 (2004).

    CAS  PubMed  Google Scholar 

  80. Rehwinkel, J., Letunic, I., Raes, J., Bork, P. & Izaurralde, E. Nonsense-mediated mRNA decay factors act in concert to regulate common mRNA targets. RNA 11, 1530–1544 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Frischmeyer, P.A. & Dietz, H.C. Nonsense-mediated mRNA decay in health and disease. Hum. Mol. Genet. 8, 1893–1900 (1999).

    CAS  PubMed  Google Scholar 

  82. Karijolich, J. & Yu, Y.T. Converting nonsense codons into sense codons by targeted pseudouridylation. Nature 474, 395–398 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Kerem, E. et al. Effectiveness of PTC124 treatment of cystic fibrosis caused by nonsense mutations: a prospective phase II trial. Lancet 372, 719–727 (2008).

    CAS  PubMed  Google Scholar 

  84. Peltz, S.W. et al. Nonsense suppression activity of PTC124 (ataluren). Proc. Natl. Acad. Sci. USA 106, E64 (2009).

    PubMed  PubMed Central  Google Scholar 

  85. Holbrook, J.A., Neu-Yilik, G., Hentze, M.W. & Kulozik, A.E. Nonsense-mediated decay approaches the clinic. Nat. Genet. 36, 801–808 (2004).

    CAS  PubMed  Google Scholar 

  86. Shan, X., Chang, Y. & Lin, C.L. Messenger RNA oxidation is an early event preceding cell death and causes reduced protein expression. FASEB J. 21, 2753–2764 (2007).

    CAS  PubMed  Google Scholar 

  87. Thorpe, G.W., Fong, C.S., Alic, N., Higgins, V.J. & Dawes, I.W. Cells have distinct mechanisms to maintain protection against different reactive oxygen species: oxidative-stress-response genes. Proc. Natl. Acad. Sci. USA 101, 6564–6569 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Chang, Y. et al. Messenger RNA oxidation occurs early in disease pathogenesis and promotes motor neuron degeneration in ALS. PLoS ONE 3, e2849 (2008).

    PubMed  PubMed Central  Google Scholar 

  89. Nunomura, A. et al. Oxidative damage is the earliest event in Alzheimer disease. J. Neuropathol. Exp. Neurol. 60, 759–767 (2001).

    CAS  PubMed  Google Scholar 

  90. Onouchi, H. et al. Nascent peptide-mediated translation elongation arrest coupled with mRNA degradation in the CGS1 gene of Arabidopsis. Genes Dev. 19, 1799–1810 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Onoue, N. et al. S-adenosyl-l-methionine induces compaction of nascent peptide chain inside the ribosomal exit tunnel upon translation arrest in the Arabidopsis CGS1 gene. J. Biol. Chem. 286, 14903–14912 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Meyer, S., Temme, C. & Wahle, E. Messenger RNA turnover in eukaryotes: pathways and enzymes. Crit. Rev. Biochem. Mol. Biol. 39, 197–216 (2004).

    CAS  PubMed  Google Scholar 

  93. Parker, R. & Song, H. The enzymes and control of eukaryotic mRNA turnover. Nat. Struct. Mol. Biol. 11, 121–127 (2004).

    CAS  PubMed  Google Scholar 

  94. Chen, J., Chiang, Y.C. & Denis, C.L. CCR4, a 3′–5′ poly(A) RNA and ssDNA exonuclease, is the catalytic component of the cytoplasmic deadenylase. EMBO J. 21, 1414–1426 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Tucker, M., Staples, R.R., Valencia-Sanchez, M.A., Muhlrad, D. & Parker, R. Ccr4p is the catalytic subunit of a Ccr4p/Pop2p/Notp mRNA deadenylase complex in Saccharomyces cerevisiae. EMBO J. 21, 1427–1436 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Coller, J. & Parker, R. Eukaryotic mRNA decapping. Annu. Rev. Biochem. 73, 861–890 (2004).

    CAS  PubMed  Google Scholar 

  97. Hsu, C.L. & Stevens, A. Yeast cells lacking 5′→3′ exoribonuclease 1 contain mRNA species that are poly(A) deficient and partially lack the 5′ cap structure. Mol. Cell Biol. 13, 4826–4835 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Hu, W., Sweet, T.J., Chamnongpol, S., Baker, K.E. & Coller, J. Co-translational mRNA decay in Saccharomyces cerevisiae. Nature 461, 225–229 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Parker, R. & Sheth, U. P bodies and the control of mRNA translation and degradation. Mol. Cell 25, 635–646 (2007).

    CAS  PubMed  Google Scholar 

  100. Dziembowski, A., Lorentzen, E., Conti, E. & Seraphin, B. A single subunit, Dis3, is essentially responsible for yeast exosome core activity. Nat. Struct. Mol. Biol. 14, 15–22 (2007).

    CAS  PubMed  Google Scholar 

  101. Bonneau, F., Basquin, J., Ebert, J., Lorentzen, E. & Conti, E. The yeast exosome functions as a macromolecular cage to channel RNA substrates for degradation. Cell 139, 547–559 (2009).

    CAS  PubMed  Google Scholar 

  102. Mitchell, P., Petfalski, E., Shevchenko, A., Mann, M. & Tollervey, D. The exosome: a conserved eukaryotic RNA processing complex containing multiple 3′→5′ exoribonucleases. Cell 91, 457–466 (1997).

    CAS  PubMed  Google Scholar 

  103. Araki, Y. et al. Ski7p G protein interacts with the exosome and the Ski complex for 3′-to-5′ mRNA decay in yeast. EMBO J. 20, 4684–4693 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Brown, J.T., Bai, X. & Johnson, A.W. The yeast antiviral proteins Ski2p, Ski3p, and Ski8p exist as a complex in vivo. RNA 6, 449–457 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Hayes, C.S. & Sauer, R.T. Cleavage of the A site mRNA codon during ribosome pausing provides a mechanism for translational quality control. Mol. Cell 12, 903–911 (2003).

    CAS  PubMed  Google Scholar 

  106. Sunohara, T., Jojima, K., Yamamoto, Y., Inada, T. & Aiba, H. Nascent-peptide-mediated ribosome stalling at a stop codon induces mRNA cleavage resulting in nonstop mRNA that is recognized by tmRNA. RNA 10, 378–386 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Keiler, K.C., Waller, P.R. & Sauer, R.T. Role of a peptide tagging system in degradation of proteins synthesized from damaged messenger RNA. Science 271, 990–993 (1996).

    CAS  PubMed  Google Scholar 

  108. Huang, C., Wolfgang, M.C., Withey, J., Koomey, M. & Friedman, D.I. Charged tmRNA but not tmRNA-mediated proteolysis is essential for Neisseria gonorrhoeae viability. EMBO J. 19, 1098–1107 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Moore, S.D. & Sauer, R.T. The tmRNA system for translational surveillance and ribosome rescue. Annu. Rev. Biochem. 76, 101–124 (2007).

    CAS  PubMed  Google Scholar 

  110. Ivanova, N., Pavlov, M.Y., Felden, B. & Ehrenberg, M. Ribosome rescue by tmRNA requires truncated mRNAs. J. Mol. Biol. 338, 33–41 (2004).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachel Green.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shoemaker, C., Green, R. Translation drives mRNA quality control. Nat Struct Mol Biol 19, 594–601 (2012). https://doi.org/10.1038/nsmb.2301

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2301

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing