Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Signal-dependent dynamics of transcription factor translocation controls gene expression

Abstract

Information about environmental stimuli is often transmitted using common signaling molecules, but the mechanisms that ensure signaling specificity are not entirely known. Here we show that the identities and intensities of different stresses are transmitted by modulation of the amplitude, duration or frequency of nuclear translocation of the Saccharomyces cerevisiae general stress response transcription factor Msn2. Through artificial control of the dynamics of Msn2 translocation, we reveal how distinct dynamical schemes differentially affect reporter gene expression. Using a simple model, we predict stress-induced reporter gene expression from single-cell translocation dynamics. We then demonstrate that the response of natural target genes to dynamical modulation of Msn2 translocation is influenced by differences in the kinetics of promoter transitions and transcription factor binding properties. Thus, multiple environmental signals can trigger qualitatively different dynamics of a single transcription factor and influence gene expression patterns.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Msn2 translocates to the nucleus with different dynamics in response to different stresses.
Figure 2: Quantification of single-cell Msn2-YFP translocation traces.
Figure 3: Experimental and computational analysis of gene expression in response to modulation of Msn2 nuclear translocation dynamics.
Figure 4: The dynamics of Msn2 nuclear translocation influences target gene expression.
Figure 5: The model predicts that target genes have distinct responses to different input regimes.
Figure 6: Analysis of a simplified model.
Figure 7: Microarray analysis to evaluate the model predictions.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Shaywitz, A.J. & Greenberg, M.E. CREB: a stimulus-induced transcription factor activated by a diverse array of extracellular signals. Annu. Rev. Biochem. 68, 821–861 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Hao, N., Zeng, Y., Elston, T.C. & Dohlman, H.G. Control of MAPK specificity by feedback phosphorylation of shared adaptor protein Ste50. J. Biol. Chem. 283, 33798–33802 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Skalhegg, B.S. & Tasken, K. Specificity in the cAMP/PKA signaling pathway. Differential expression, regulation, and subcellular localization of subunits of PKA. Front. Biosci. 5, D678–D693 (2000).

    CAS  PubMed  Google Scholar 

  4. Behar, M. & Hoffmann, A. Understanding the temporal codes of intra-cellular signals. Curr. Opin. Genet. Dev. 20, 684–693 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hoffmann, A., Levchenko, A., Scott, M.L. & Baltimore, D. The IkappaB-NF-kappaB signaling module: temporal control and selective gene activation. Science 298, 1241–1245 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Lee, T.K. et al. A noisy paracrine signal determines the cellular NF-kappaB response to lipopolysaccharide. Sci. Signal. 2, ra65 (2009).

    PubMed  PubMed Central  Google Scholar 

  7. Ashall, L. et al. Pulsatile stimulation determines timing and specificity of NF-kappaB-dependent transcription. Science 324, 242–246 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tay, S. et al. Single-cell NF-kappaB dynamics reveal digital activation and analogue information processing. Nature 466, 267–271 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cai, L., Dalal, C.K. & Elowitz, M.B. Frequency-modulated nuclear localization bursts coordinate gene regulation. Nature 455, 485–490 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Martínez-Pastor, M.T. et al. The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element (STRE). EMBO J. 15, 2227–2235 (1996).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Schmitt, A.P. & McEntee, K. Msn2p, a zinc finger DNA-binding protein, is the transcriptional activator of the multistress response in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 93, 5777–5782 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Görner, W. et al. Nuclear localization of the C2H2 zinc finger protein Msn2p is regulated by stress and protein kinase A activity. Genes Dev. 12, 586–597 (1998).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Görner, W. et al. Acute glucose starvation activates the nuclear localization signal of a stress-specific yeast transcription factor. EMBO J. 21, 135–144 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hersen, P., McClean, M.N., Mahadevan, L. & Ramanathan, S. Signal processing by the HOG MAP kinase pathway. Proc. Natl. Acad. Sci. USA 105, 7165–7170 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jacquet, M., Renault, G., Lallet, S., De Mey, J. & Goldbeter, A. Oscillatory nucleocytoplasmic shuttling of the general stress response transcriptional activators Msn2 and Msn4 in Saccharomyces cerevisiae. J. Cell Biol. 161, 497–505 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Medvedik, O., Lamming, D.W., Kim, K.D. & Sinclair, D.A. MSN2 and MSN4 link calorie restriction and TOR to sirtuin-mediated lifespan extension in Saccharomyces cerevisiae. PLoS Biol. 5, e261 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bishop, A.C. et al. A chemical switch for inhibitor-sensitive alleles of any protein kinase. Nature 407, 395–401 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Sheff, M.A. & Thorn, K.S. Optimized cassettes for fluorescent protein tagging in Saccharomyces cerevisiae. Yeast 21, 661–670 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Shenton, D. et al. Global translational responses to oxidative stress impact upon multiple levels of protein synthesis. J. Biol. Chem. 281, 29011–29021 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Kim, H.D. & O'Shea, E.K. A quantitative model of transcription factor-activated gene expression. Nat. Struct. Mol. Biol. 15, 1192–1198 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jessen, W.J., Hoose, S.A., Kilgore, J.A. & Kladde, M.P. Active PHO5 chromatin encompasses variable numbers of nucleosomes at individual promoters. Nat. Struct. Mol. Biol. 13, 256–263 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Lam, F.H., Steger, D.J. & O'Shea, E.K. Chromatin decouples promoter threshold from dynamic range. Nature 453, 246–250 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Marshall, C.J. Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 80, 179–185 (1995).

    Article  CAS  PubMed  Google Scholar 

  24. Giorgetti, L. et al. Noncooperative interactions between transcription factors and clustered DNA binding sites enable graded transcriptional responses to environmental inputs. Mol. Cell 37, 418–428 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. Geva-Zatorsky, N. et al. Oscillations and variability in the p53 system. Mol. Syst. Biol. 2, 2006.0033 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Loewer, A., Batchelor, E., Gaglia, G. & Lahav, G. Basal dynamics of p53 reveal transcriptionally attenuated pulses in cycling cells. Cell 142, 89–100 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Werner, S.L., Barken, D. & Hoffmann, A. Stimulus specificity of gene expression programs determined by temporal control of IKK activity. Science 309, 1857–1861 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Hao, N. et al. Regulation of cell signaling dynamics by the protein kinase-scaffold Ste5. Mol. Cell 30, 649–656 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Capaldi, A.P. et al. Structure and function of a transcriptional network activated by the MAPK Hog1. Nat. Genet. 40, 1300–1306 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhou, X. & O'Shea, E.K. Integrated approaches reveal determinants of genome-wide binding and function of the transcription factor Pho4. Mol. Cell 42, 826–836 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gasch, A.P. et al. Genomic expression programs in the response of yeast cells to environmental changes. Mol. Biol. Cell 11, 4241–4257 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank S. Ramanathan for help with the microfluidics devices. We thank P. Cluzel, V. Denic, G. Lahav, M. Springer, B. Stern, H. Dohlman, T. Elston and M. Behar for critical comments on the manuscript. We thank X. Zhou in the O'Shea lab for generously providing the unpublished nucleosome profile data, M. Rust and S. Mukherji for insightful suggestions, and other members of the O'Shea lab for helpful discussions. E.K.O. is a Howard Hughes Medical Institute investigator.

Author information

Authors and Affiliations

Authors

Contributions

N.H. and E.K.O. designed the project. N.H. carried out the experiments and analyzed the data. N.H. and E.K.O. wrote the paper.

Corresponding author

Correspondence to Erin K O'Shea.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–15, Supplementary Results and Supplementary Methods (PDF 6869 kb)

Supplementary Video 1

Time-lapse video of Msn2-YFP in response to 0.1% glucose limitation. (MP4 3256 kb)

Supplementary Video 2

Time-lapse video of Msn2-YFP in response to 0.375 M KCl. (MP4 3297 kb)

Supplementary Video 3

Time-lapse video of Msn2-YFP in response to 0.01 mM H2O2. (MP4 2853 kb)

Supplementary Video 4

Time-lapse video of Msn2-YFP in response to oscillatory 1-NM-PP1 treatment. (MP4 1837 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hao, N., O'Shea, E. Signal-dependent dynamics of transcription factor translocation controls gene expression. Nat Struct Mol Biol 19, 31–39 (2012). https://doi.org/10.1038/nsmb.2192

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2192

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing