Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mechanism of error-free and semitargeted mutagenic bypass of an aromatic amine lesion by Y-family polymerase Dpo4

Abstract

The aromatic amine carcinogen 2-aminofluorene (AF) forms covalent adducts with DNA, predominantly with guanine at the C8 position. Such lesions are bypassed by Y-family polymerases such as Dpo4 via error-free and error-prone mechanisms. We show that Dpo4 catalyzes elongation from a correct 3′-terminal cytosine opposite [AF]G in a nonrepetitive template sequence with low efficiency. This extension leads to cognate full-length product, as well as mis-elongated products containing base mutations and deletions. Crystal structures of the Dpo4 ternary complex, with the 3′-terminal primer cytosine base opposite [AF]G in the anti conformation and with the AF moiety positioned in the major groove, reveal both accurate and misalignment-mediated mutagenic extension pathways. The mutagenic template–primer–dNTP arrangement is promoted by interactions between the polymerase and the bulky lesion rather than by a base pair–stabilized misaligment. Further extension leads to semitargeted mutations via this proposed polymerase-guided mechanism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the [AF]G·A-1 Dpo4 extension ternary complex.
Figure 2: Structure of the [AF]G·C-1 Dpo4 extension ternary complex containing two distinct molecules per asymmetric unit (AU), with correct and mutagenic alignment for extension from the [AF]G(anti)·C base pair.
Figure 3: Interactions of the Dpo4 little finger and thumb domains with template–primer DNA in extension and post-extension [AF]G-modified Dpo4 ternary complexes.
Figure 4: Structure of the [AF]G·C-2 Dpo4 post-extension ternary complex.
Figure 5: Structure of the [AF]G·A-2 Dpo4 post-extension ternary complex containing two molecules per asymmetric unit with different positions of the partner A14 base.
Figure 6: Efficiency and fidelity of base incorporation and extension of primers bound to unmodified G and [AF]G template by Dpo4.
Figure 7: Misalignment-mediated replication errors and proposed mechanism for the [AF]G-induced semitargeted mutagenesis.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Kadlubar, F.F. DNA adducts of carcinogenic aromatic amines. IARC Sci. Publ. 125, 199–216 (1994).

    CAS  Google Scholar 

  2. Turesky, R.J. Formation and biochemistry of carcinogenic heterocyclic aromatic amines in cooked meats. Toxicol. Lett. 168, 219–227 (2007).

    Article  CAS  Google Scholar 

  3. Clapp, R.W., Jacobs, M.M. & Loechler, E.L. Environmental and occupational causes of cancer: new evidence 2005-2007. Rev. Environ. Health 23, 1–37 (2008).

    Article  CAS  Google Scholar 

  4. Heflich, R.H. & Neft, R.E. Genetic toxicity of 2-acetylaminofluorene, 2-aminofluorene and some of their metabolites and model metabolites. Mutat. Res. 318, 73–114 (1994).

    Article  CAS  Google Scholar 

  5. Shibutani, S., Suzuki, N., Tan, X., Johnson, F. & Grollman, A.P. Influence of flanking sequence context on the mutagenicity of acetylaminofluorene-derived DNA adducts in mammalian cells. Biochemistry 40, 3717–3722 (2001).

    Article  CAS  Google Scholar 

  6. Watt, D.L., Utzat, C.D., Hilario, P. & Basu, A.K. Mutagenicity of the 1-nitropyrene-DNA adduct N-(deoxyguanosin-8-yl)-1-aminopyrene in mammalian cells. Chem. Res. Toxicol. 20, 1658–1664 (2007).

    Article  CAS  Google Scholar 

  7. Tan, X., Suzuki, N., Grollman, A.P. & Shibutani, S. Mutagenic events in Escherichia coli and mammalian cells generated in response to acetylaminofluorene-derived DNA adducts positioned in the Nar I restriction enzyme site. Biochemistry 41, 14255–14262 (2002).

    Article  CAS  Google Scholar 

  8. Mozzherin, D.J., Shibutani, S., Tan, C.K., Downey, K.M. & Fisher, P.A. Proliferating cell nuclear antigen promotes DNA synthesis past template lesions by mammalian DNA polymerase delta. Proc. Natl. Acad. Sci. USA 94, 6126–6131 (1997).

    Article  CAS  Google Scholar 

  9. Doisy, R. & Tang, M.S. Effect of aminofluorene and (acetylamino)fluorene adducts on the DNA replication mediated by Escherichia coli polymerases I (Klenow fragment) and III. Biochemistry 34, 4358–4368 (1995).

    Article  CAS  Google Scholar 

  10. Lindsley, J.E. & Fuchs, R.P. Use of single-turnover kinetics to study bulky adduct bypass by T7 DNA polymerase. Biochemistry 33, 764–772 (1994).

    Article  CAS  Google Scholar 

  11. Belguise-Valladier, P. & Fuchs, R.P. N-2-aminofluorene and N-2 acetylaminofluorene adducts: the local sequence context of an adduct and its chemical structure determine its replication properties. J. Mol. Biol. 249, 903–913 (1995).

    Article  CAS  Google Scholar 

  12. Miller, H. & Grollman, A.P. Kinetics of DNA polymerase I (Klenow fragment exo-) activity on damaged DNA templates: effect of proximal and distal template damage on DNA synthesis. Biochemistry 36, 15336–15342 (1997).

    Article  CAS  Google Scholar 

  13. Shibutani, S. & Grollman, A.P. On the mechanism of frameshift (deletion) mutagenesis in vitro. J. Biol. Chem. 268, 11703–11710 (1993).

    CAS  PubMed  Google Scholar 

  14. Lone, S. & Romano, L.J. The role of specific amino acid residues in the active site of Escherichia coli DNA polymerase I on translesion DNA synthesis across from and past an N-2-aminofluorene adduct. Biochemistry 46, 2599–2607 (2007).

    Article  CAS  Google Scholar 

  15. Yang, W. & Woodgate, R. What a difference a decade makes: insights into translesion DNA synthesis. Proc. Natl. Acad. Sci. USA 104, 15591–15598 (2007).

    Article  CAS  Google Scholar 

  16. McCulloch, S.D. & Kunkel, T.A. The fidelity of DNA synthesis by eukaryotic replicative and translesion synthesis polymerases. Cell Res. 18, 148–161 (2008).

    Article  CAS  Google Scholar 

  17. Waters, L.S. et al. Eukaryotic translesion polymerases and their roles and regulation in DNA damage tolerance. Microbiol. Mol. Biol. Rev. 73, 134–154 (2009).

    Article  CAS  Google Scholar 

  18. Koffel-Schwartz, N., Coin, F., Veaute, X. & Fuchs, R.P. Cellular strategies for accommodating replication-hindering adducts in DNA: control by the SOS response in Escherichia coli. Proc. Natl. Acad. Sci. USA 93, 7805–7810 (1996).

    Article  CAS  Google Scholar 

  19. Tebbs, R.S. & Romano, L.J. Mutagenesis at a site-specifically modified NarI sequence by acetylated and deacetylated aminofluorene adducts. Biochemistry 33, 8998–9006 (1994).

    Article  CAS  Google Scholar 

  20. Reifferscheid, G. & Heil, J. Validation of the SOS/umu test using test results of 486 chemicals and comparison with the Ames test and carcinogenicity data. Mutat. Res. 369, 129–145 (1996).

    Article  CAS  Google Scholar 

  21. Suzuki, N. et al. Translesional synthesis past acetylaminofluorene-derived DNA adducts catalyzed by human DNA polymerase κ and Escherichia coli DNA polymerase IV. Biochemistry 40, 15176–15183 (2001).

    Article  CAS  Google Scholar 

  22. Vooradi, V. & Romano, L.J. Effect of N-2-acetylaminofluorene and 2-aminofluorene adducts on DNA binding and synthesis by yeast DNA polymerase β. Biochemistry 48, 4209–4216 (2009).

    Article  CAS  Google Scholar 

  23. Steitz, T.A. & Yin, Y.W. Accuracy, lesion bypass, strand displacement and translocation by DNA polymerases. Phil. Trans. R. Soc. Lond. B 359, 17–23 (2004).

    Article  CAS  Google Scholar 

  24. Johnson, S.J. & Beese, L.S. Structures of mismatch replication errors observed in a DNA polymerase. Cell 116, 803–816 (2004).

    Article  CAS  Google Scholar 

  25. Swan, M.K., Johnson, R.E., Prakash, L., Prakash, S. & Aggarwal, A.K. Structural basis of high-fidelity DNA synthesis by yeast DNA polymerase δ. Nat. Struct. Mol. Biol. 16, 979–986 (2009).

    Article  CAS  Google Scholar 

  26. Lone, S. et al. Human DNA polymerase kappa encircles DNA: implications for mismatch extension and lesion bypass. Mol. Cell 25, 601–614 (2007).

    Article  CAS  Google Scholar 

  27. Alt, A. et al. Bypass of DNA lesions generated during anticancer treatment with cisplatin by DNA polymerase eta. Science 318, 967–970 (2007).

    Article  CAS  Google Scholar 

  28. Mizukami, S., Kim, T.W., Helquist, S.A. & Kool, E.T. Varying DNA base-pair size in subangstrom increments: evidence for a loose, not large, active site in low-fidelity Dpo4 polymerase. Biochemistry 45, 2772–2778 (2006).

    Article  CAS  Google Scholar 

  29. Broyde, S., Wang, L., Rechkoblit, O., Geacintov, N.E. & Patel, D.J. Lesion processing: high-fidelity versus lesion-bypass DNA polymerases. Trends Biochem. Sci. 33, 209–219 (2008).

    Article  CAS  Google Scholar 

  30. Hsu, G.W. et al. Observing translesion synthesis of an aromatic amine DNA adduct by a high-fidelity DNA polymerase. J. Biol. Chem. 279, 50280–50285 (2004).

    Article  CAS  Google Scholar 

  31. Dutta, S. et al. Crystal structures of 2-acetylaminofluorene and 2-aminofluorene in complex with T7 DNA polymerase reveal mechanisms of mutagenesis. Proc. Natl. Acad. Sci. USA 101, 16186–16191 (2004).

    Article  CAS  Google Scholar 

  32. Burnouf, D.Y. & Wagner, J.E. Kinetics of deoxy-CTP incorporation opposite a dG-C8-N-2-aminofluorene adduct by a high-fidelity DNA polymerase. J. Mol. Biol. 386, 951–961 (2009).

    Article  CAS  Google Scholar 

  33. Patel, D.J. et al. Nuclear magnetic resonance solution structures of covalent aromatic amine-DNA adducts and their mutagenic relevance. Chem. Res. Toxicol. 11, 391–407 (1998).

    Article  CAS  Google Scholar 

  34. Meneni, S.R. et al. Spectroscopic and theoretical insights into sequence effects of aminofluorene-induced conformational heterogeneity and nucleotide excision repair. Biochemistry 46, 11263–11278 (2007).

    Article  CAS  Google Scholar 

  35. Norman, D. et al. NMR and computational characterization of the N-(deoxyguanosin-8-yl)aminofluorene adduct [(AF)G] opposite adenosine in DNA: (AF)G[syn].A[anti] pair formation and its pH dependence. Biochemistry 28, 7462–7476 (1989).

    Article  CAS  Google Scholar 

  36. Jain, N., Meneni, S., Jain, V. & Cho, B.P. Influence of flanking sequence context on the conformational flexibility of aminofluorene-modified dG adduct in dA mismatch DNA duplexes. Nucleic Acids Res. 37, 1628–1637 (2009).

    Article  CAS  Google Scholar 

  37. Kunkel, T.A. Misalignment-mediated DNA synthesis errors. Biochemistry 29, 8003–8011 (1990).

    Article  CAS  Google Scholar 

  38. Ripley, L.S. Frameshift mutation: determinants of specificity. Annu. Rev. Genet. 24, 189–213 (1990).

    Article  CAS  Google Scholar 

  39. Tippin, B., Kobayashi, S., Bertram, J.G. & Goodman, M.F. To slip or skip, visualizing frameshift mutation dynamics for error-prone DNA polymerases. J. Biol. Chem. 279, 45360–45368 (2004).

    Article  CAS  Google Scholar 

  40. Lambert, I.B., Napolitano, R.L. & Fuchs, R.P. Carcinogen-induced frameshift mutagenesis in repetitive sequences. Proc. Natl. Acad. Sci. USA 89, 1310–1314 (1992).

    Article  CAS  Google Scholar 

  41. Shibutani, S., Suzuki, N. & Grollman, A.P. Mechanism of frameshift (deletion) generated by acetylaminofluorene-derived DNA adducts in vitro. Biochemistry 43, 15929–15935 (2004).

    Article  CAS  Google Scholar 

  42. Stover, J.S., Chowdhury, G., Zang, H., Guengerich, F.P. & Rizzo, C.J. Translesion synthesis past the C8- and N2-deoxyguanosine adducts of the dietary mutagen 2-Amino-3-methylimidazo[4,5-f]quinoline in the NarI recognition sequence by prokaryotic DNA polymerases. Chem. Res. Toxicol. 19, 1506–1517 (2006).

    Article  CAS  Google Scholar 

  43. Bacolod, M.D., Krishnasamy, R. & Basu, A.K. Mutagenicity of the 1-nitropyrene-DNA adduct N-(deoxyguanosin-8-yl)-1-aminopyrene in Escherichia coli located in a nonrepetitive CGC sequence. Chem. Res. Toxicol. 13, 523–528 (2000).

    Article  CAS  Google Scholar 

  44. Garcia-Diaz, M., Bebenek, K., Krahn, J.M., Pedersen, L.C. & Kunkel, T.A. Structural analysis of strand misalignment during DNA synthesis by a human DNA polymerase. Cell 124, 331–342 (2006).

    Article  CAS  Google Scholar 

  45. Wilson, R.C. & Pata, J.D. Structural insights into the generation of single-base deletions by the Y family DNA polymerase dbh. Mol. Cell 29, 767–779 (2008).

    Article  CAS  Google Scholar 

  46. Bauer, J. et al. A structural gap in Dpo4 supports mutagenic bypass of a major benzo[a]pyrene dG adduct in DNA through template misalignment. Proc. Natl. Acad. Sci. USA 104, 14905–14910 (2007).

    Article  CAS  Google Scholar 

  47. Wang, F. & Yang, W. Structural insight into translesion synthesis by DNA Pol II. Cell 139, 1279–1289 (2009).

    Article  Google Scholar 

  48. Ling, H., Boudsocq, F., Woodgate, R. & Yang, W. Crystal structure of a Y-family DNA polymerase in action: a mechanism for error-prone and lesion-bypass replication. Cell 107, 91–102 (2001).

    Article  CAS  Google Scholar 

  49. Rechkoblit, O. et al. Stepwise translocation of Dpo4 polymerase during error-free bypass of an oxoG lesion. PLoS Biol. 4, e11 (2006).

    Article  Google Scholar 

  50. Vaisman, A., Ling, H., Woodgate, R. & Yang, W. Fidelity of Dpo4: effect of metal ions, nucleotide selection and pyrophosphorolysis. EMBO J. 24, 2957–2967 (2005).

    Article  CAS  Google Scholar 

  51. Hunter, W.N., Brown, T. & Kennard, O. Structural features and hydration of d(C-G-C-G-A-A-T-T-A-G-C-G); a double helix containing two G.A mispairs. J. Biomol. Struct. Dyn. 4, 173–191 (1986).

    Article  CAS  Google Scholar 

  52. Colis, L.C., Raychaudhury, P. & Basu, A.K. Mutational specificity of gamma-radiation-induced guanine-thymine and thymine-guanine intrastrand cross-links in mammalian cells and translesion synthesis past the guanine-thymine lesion by human DNA polymerase eta. Biochemistry 47, 8070–8079 (2008).

    Article  CAS  Google Scholar 

  53. Hendel, A., Ziv, O., Gueranger, Q., Geacintov, N. & Livneh, Z. Reduced efficiency and increased mutagenicity of translesion DNA synthesis across a TT cyclobutane pyrimidine dimer, but not a TT 6-4 photoproduct, in human cells lacking DNA polymerase eta. DNA Repair (Amst.) 7, 1636–1646 (2008).

    Article  CAS  Google Scholar 

  54. Bailey, E.A., Iyer, R.S., Stone, M.P., Harris, T.M. & Essigmann, J.M. Mutational properties of the primary aflatoxin B1-DNA adduct. Proc. Natl. Acad. Sci. USA 93, 1535–1539 (1996).

    Article  CAS  Google Scholar 

  55. Bishop, R.E., Pauly, G.T. & Moschel, R.C. O6-ethylguanine and O6-benzylguanine incorporated site-specifically in codon 12 of the rat H-ras gene induce semi-targeted as well as targeted mutations in Rat4 cells. Carcinogenesis 17, 849–856 (1996).

    Article  CAS  Google Scholar 

  56. Jelinsky, S.A., Liu, T., Geacintov, N.E. & Loechler, E.L. The major, N2-Gua adduct of the (+)-anti-benzo[a]pyrene diol epoxide is capable of inducing G-->A and G-->C, in addition to G-->T, mutations. Biochemistry 34, 13545–13553 (1995).

    Article  CAS  Google Scholar 

  57. Xu, P., Oum, L., Lee, Y.C., Geacintov, N.E. & Broyde, S. Visualizing sequence-governed nucleotide selectivities and mutagenic consequences through a replicative cycle: processing of a bulky carcinogen N(2)-dG lesion in a Y-family DNA polymerase. Biochemistry 48, 4677–4690 (2009).

    Article  CAS  Google Scholar 

  58. Bresson, A. & Fuchs, R.P. Lesion bypass in yeast cells: Pol β participates in a multi-DNA polymerase process. EMBO J. 21, 3881–3887 (2002).

    Article  CAS  Google Scholar 

  59. Eckel, L.M. & Krugh, T.R. 2-Aminofluorene modified DNA duplex exists in two interchangeable conformations. Nat. Struct. Biol. 1, 89–94 (1994).

    Article  CAS  Google Scholar 

  60. Nair, D.T., Johnson, R.E., Prakash, L., Prakash, S. & Aggarwal, A.K. Rev1 employs a novel mechanism of DNA synthesis using a protein template. Science 309, 2219–2222 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Y.Cheng for help with expression and purification of Dpo4, A. Serganov for data collection from the [AF]G·C-1 and [AF]G·A-2 crystals and L. Wang (New York Univ.) for providing the coordinates of the [AF]G-modified DNA duplexes. The research was supported by US National Institutes of Health grants CA46533 to D.J.P., CA75449 to S.B. and CA99194 to N.E.G. Partial support for computational infrastructure and computer systems management was also provided to S.B. by CA28038. We would like to thank the staff at the Northeastern Collaborative Access Team beamlines of the Advanced Photon Source (APS), Argonne National Laboratory, supported by award RR-15301 from the National Center for Research Resources at the National Institute of Health, for assistance with data collection. Use of the Advanced Photon Source is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

Author information

Authors and Affiliations

Authors

Contributions

O.R. conducted and interpreted all the structural and kinetic measurements under the supervision of D.J.P., S.B. and N.E.G.; A.K. was responsible for the synthesis and purification of [AF]G-containing DNAs under the supervision of N.E.G.; L.M. was involved in specific aspects of crystal structure refinement. The paper was written by O.R., D.J.P., S.B. and N.E.G.

Corresponding author

Correspondence to Dinshaw J Patel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10, Supplementary Table 1 and Supplementary Data (PDF 771 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rechkoblit, O., Kolbanovskiy, A., Malinina, L. et al. Mechanism of error-free and semitargeted mutagenic bypass of an aromatic amine lesion by Y-family polymerase Dpo4. Nat Struct Mol Biol 17, 379–388 (2010). https://doi.org/10.1038/nsmb.1771

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1771

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing