Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Molecular mechanisms for protein-encoded inheritance

Abstract

In prion inheritance and transmission, strains are phenotypic variants encoded by protein 'conformations'. However, it is unclear how a protein conformation can be stable enough to endure transmission between cells or organisms. Here we describe new polymorphic crystal structures of segments of prion and other amyloid proteins, which offer two structural mechanisms for the encoding of prion strains. In packing polymorphism, prion strains are encoded by alternative packing arrangements (polymorphs) of β-sheets formed by the same segment of a protein; in segmental polymorphism, prion strains are encoded by distinct β-sheets built from different segments of a protein. Both forms of polymorphism can produce enduring conformations capable of encoding strains. These molecular mechanisms for transfer of protein-encoded information into prion strains share features with the familiar mechanism for transfer of nucleic acid–encoded information into microbial strains, including sequence specificity and recognition by noncovalent bonds.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Packing polymorphism of steric zippers, determined by X-ray microcrystallography.
Figure 2: Segmental polymorphism in IAPP.
Figure 3: Evidence for at least two steric zipper polymorphs in full-length IAPP.
Figure 4: Schematic summary of steric zipper mechanisms for amyloid and prion polymorphism.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Prusiner, S.B. Prions. Proc. Natl. Acad. Sci. USA 95, 13363–13383 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chien, P., Weissman, J.S. & DePace, A.H. Emerging principles of conformation-based prion inheritance. Annu. Rev. Biochem. 73, 617–656 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Wickner, R.B., Edskes, H.K., Shewmaker, F. & Nakayashiki, T. Prions of fungi: inherited structures and biological roles. Nat. Rev. Microbiol. 5, 611–618 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ross, E.D., Minton, A. & Wickner, R.B. Prion domains: sequences, structures and interactions. Nat. Cell Biol. 7, 1039–1044 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Collinge, J., Sidle, K.C., Meads, J., Ironside, J. & Hill, A.F. Molecular analysis of prion strain variation and the aetiology of 'new variant' CJD. Nature 383, 685–690 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Legname, G. et al. Continuum of prion protein structures enciphers a multitude of prion isolate-specified phenotypes. Proc. Natl. Acad. Sci. USA 103, 19105–19110 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Caughey, B. & Chesebro, B. Prion protein and the transmissible spongiform encephalopathies. Trends Cell Biol. 7, 56–62 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Tanaka, M., Chien, P., Naber, N., Cooke, R. & Weissman, J.S. Conformational variations in an infectious protein determine prion strain differences. Nature 428, 323–328 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. King, C.Y. & Diaz-Avalos, R. Protein-only transmission of three yeast prion strains. Nature 428, 319–323 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Petkova, A.T. et al. Self-propagating, molecular-level polymorphism in Alzheimer's β-amyloid fibrils. Science 307, 262–265 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Goldsbury, C.S. et al. Polymorphic fibrillar assembly of human amylin. J. Struct. Biol. 119, 17–27 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Jones, E.M. & Surewicz, W.K. Fibril conformation as the basis of species- and strain-dependent seeding specificity of mammalian prion amyloids. Cell 121, 63–72 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Lundmark, K., Westermark, G.T., Olsen, A. & Westermark, P. Protein fibrils in nature can enhance amyloid protein A amyloidosis in mice: Cross-seeding as a disease mechanism. Proc. Natl. Acad. Sci. USA 102, 6098–6102 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Krishnan, R. & Lindquist, S.L. Structural insights into a yeast prion illuminate nucleation and strain diversity. Nature 435, 765–772 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tessier, P.M. & Lindquist, S. Prion recognition elements govern nucleation, strain specificity and species barriers. Nature 447, 556–561 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Paravastu, A.K., Leapman, R.D., Yau, W.M. & Tycko, R. Molecular structural basis for polymorphism in Alzheimer's β-amyloid fibrils. Proc. Natl. Acad. Sci. USA 105, 18349–18354 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chang, H.Y., Lin, J.Y., Lee, H.C., Wang, H.L. & King, C.Y. Strain-specific sequences required for yeast [PSI+] prion propagation. Proc. Natl. Acad. Sci. USA 105, 13345–13350 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Madine, J. et al. Structural insights into the polymorphism of amyloid-like fibrils formed by region 20–29 of amylin revealed by solid-state NMR and X-ray fiber diffraction. J. Am. Chem. Soc. 130, 14990–15001 (2008).

    Article  PubMed  Google Scholar 

  19. Sachse, C., Fandrich, M. & Grigorieff, N. Paired beta-sheet structure of an Abeta(1–40) amyloid fibril revealed by electron microscopy. Proc. Natl. Acad. Sci. USA 105, 7462–7466 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nelson, R. et al. Structure of the cross-β spine of amyloid-like fibrils. Nature 435, 773–778 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sawaya, M.R. et al. Atomic structures of amyloid cross-beta spines reveal varied steric zippers. Nature 447, 453–457 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Wiltzius, J.J. et al. Atomic structure of the cross-β spine of islet amyloid polypeptide (amylin). Protein Sci. 17, 1467–1474 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Höppener, J.W., Ahren, B. & Lips, C.J. Islet amyloid and type 2 diabetes mellitus. N. Engl. J. Med. 343, 411–419 (2000).

    Article  PubMed  Google Scholar 

  24. von Bergen, M. et al. Assembly of tau protein into Alzheimer paired helical filaments depends on a local sequence motif ((306)VQIVYK(311)) forming beta structure. Proc. Natl. Acad. Sci. USA 97, 5129–5134 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sigurdson, C.J. et al. De novo generation of a transmissible spongiform encephalopathy by mouse transgenesis. Proc. Natl. Acad. Sci. USA 106, 304–309 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Sunde, M. et al. Common core structure of amyloid fibrils by synchrotron X-ray diffraction. J. Mol. Biol. 273, 729–739 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Nishi, M., Chan, S.J., Nagamatsu, S., Bell, G.I. & Steiner, D.F. Conservation of the sequence of islet amyloid polypeptide in five mammals is consistent with its putative role as an islet hormone. Proc. Natl. Acad. Sci. USA 86, 5738–5742 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Betsholtz, C. et al. Sequence divergence in a specific region of islet amyloid polypeptide (IAPP) explains differences in islet amyloid formation between species. FEBS Lett. 251, 261–264 (1989).

    Article  CAS  PubMed  Google Scholar 

  29. Green, J. et al. Full-length rat amylin forms fibrils following substitution of single residues from human amylin. J. Mol. Biol. 326, 1147–1156 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Tanaka, M., Collins, S.R., Toyama, B.H. & Weissman, J.S. The physical basis of how prion conformations determine strain phenotypes. Nature 442, 585–589 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Wasmer, C. et al. Amyloid fibrils of the HET-s(218–289) prion form a beta solenoid with a triangular hydrophobic core. Science 319, 1523–1526 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Tanaka, M., Chien, P., Yonekura, K. & Weissman, J.S. Mechanism of cross-species prion transmission: an infectious conformation compatible with two highly divergent yeast prion proteins. Cell 121, 49–62 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Prusiner, S.B. et al. Scrapie prions aggregate to form amyloid-like birefringent rods. Cell 35, 349–358 (1983).

    Article  CAS  PubMed  Google Scholar 

  34. Come, J.H., Fraser, P.E. & Lansbury, P.T. Jr. A kinetic model for amyloid formation in the prion diseases: importance of seeding. Proc. Natl. Acad. Sci. USA 90, 5959–5963 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Glover, J.R. et al. Self-seeded fibers formed by Sup35, the protein determinant of [PSI+], a heritable prion-like factor of S. cerevisiae. Cell 89, 811–819 (1997).

    Article  CAS  PubMed  Google Scholar 

  36. Pauling, L. & Corey, R.B. The pleated sheet, a new layer configuration of polypeptide chains. Proc. Natl. Acad. Sci. USA 37, 251–256 (1951).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tsemekhman, K., Goldschmidt, L., Eisenberg, D. & Baker, D. Cooperative hydrogen bonding in amyloid formation. Protein Sci. 16, 761–764 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jarrett, J.T. & Lansbury, P.T. Jr. Seeding “one-dimensional crystallization” of amyloid: a pathogenic mechanism in Alzheimer's disease and scrapie? Cell 73, 1055–1058 (1993).

    Article  CAS  PubMed  Google Scholar 

  39. Meinhardt, J., Sachse, C., Hortschansky, P., Grigorieff, N. & Fandrich, M. Abeta(1–40) fibril polymorphism implies diverse interaction patterns in amyloid fibrils. J. Mol. Biol. 386, 869–877 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Shorter, J. & Lindquist, S. Prions as adaptive conduits of memory and inheritance. Nat. Rev. Genet. 6, 435–450 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Alberti, S., Halfmann, R., King, O., Kapila, A. & Lindquist, S. A systematic survey identifies prions and illuminates sequence features of prionogenic proteins. Cell 137, 146–158 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Thompson, M.J. et al. The 3D profile method for identifying fibril-forming segments of proteins. Proc. Natl. Acad. Sci. USA 103, 4074–4078 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Liu, Y. & Kuhlman, B. RosettaDesign server for protein design. Nucleic Acids Res. 34, W235–W238 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the NE-CAT beamline at the Advanced Photon Source and ID-13 beamline at the European Synchrotron Radiation Facility for beam time and collection assistance, and the National Science Foundation, National Institutes of Health and Howard Hughes Medical Institute for financial support, and P. Chien for discussion.

Author information

Authors and Affiliations

Authors

Contributions

J.J.W.W., M.L., R.N., M.I.A. and M.R.S. planned, executed and analyzed the research and coauthored the paper; L.G. planned and analyzed the research; A.B.S. executed and analyzed the research; D.C. and K.R. collected the X-ray diffraction data; and D.E. supervised the research and coauthored the paper.

Corresponding author

Correspondence to David Eisenberg.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 and Supplementary Table 1 and Supplementary Methods (PDF 760 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wiltzius, J., Landau, M., Nelson, R. et al. Molecular mechanisms for protein-encoded inheritance. Nat Struct Mol Biol 16, 973–978 (2009). https://doi.org/10.1038/nsmb.1643

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1643

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing