Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

FANCI phosphorylation functions as a molecular switch to turn on the Fanconi anemia pathway

Abstract

In response to DNA damage or replication fork stress, the Fanconi anemia pathway is activated, leading to monoubiquitination of FANCD2 and FANCI and their colocalization in foci. Here we show that, in the chicken DT40 cell system, multiple alanine-substitution mutations in six conserved and clustered Ser/Thr-Gln motifs of FANCI largely abrogate monoubiquitination and focus formation of both FANCI and FANCD2, resulting in loss of DNA repair function. Conversely, FANCI carrying phosphomimic mutations on the same six residues induces constitutive monoubiquitination and focus formation of FANCI and FANCD2, and protects against cell killing and chromosome breakage by DNA interstrand cross-linking agents. We propose that the multiple phosphorylation of FANCI serves as a molecular switch in activation of the Fanconi anemia pathway. Mutational analysis of putative phosphorylation sites in human FANCI indicates that this switch is evolutionarily conserved.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Gene targeting of FANCI resulted in loss of FANCD2 monoubiquitination and focus formation.
Figure 2: FANCI monoubiquitination has a minor role in inducing Fanconi anemia pathway activation.
Figure 3: FANCI monoubiquitination depends on FANCD2 monoubiquitination, but their physical interaction is constitutive.
Figure 4: Phosphorylation sites in FANCI are required for Fanconi anemia pathway activation and DNA repair.
Figure 5: Phosphomimic mutants induce constitutive activation of the Fanconi anemia pathway.
Figure 6: Analysis of phosphorylation mutants in human FANCI.

Similar content being viewed by others

Accession codes

Accessions

DDBJ/GenBank/EMBL

References

  1. Hoeijmakers, J.H. Genome maintenance mechanisms for preventing cancer. Nature 411, 366–374 (2001).

    Article  CAS  Google Scholar 

  2. Nijnik, A. et al. DNA repair is limiting for haematopoietic stem cells during ageing. Nature 447, 686–690 (2007).

    Article  CAS  Google Scholar 

  3. Ito, K. et al. Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells. Nature 431, 997–1002 (2004).

    Article  CAS  Google Scholar 

  4. Rossi, D.J. et al. Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age. Nature 447, 725–729 (2007).

    Article  CAS  Google Scholar 

  5. D'Andrea, A.D. & Grompe, M. The Fanconi anaemia/BRCA pathway. Nat. Rev. Cancer 3, 23–34 (2003).

    Article  CAS  Google Scholar 

  6. Wang, W. Emergence of a DNA-damage response network consisting of Fanconi anaemia and BRCA proteins. Nat. Rev. Genet. 8, 735–748 (2007).

    Article  CAS  Google Scholar 

  7. Smogorzewska, A. et al. Identification of the FANCI protein, a monoubiquitinated FANCD2 paralog required for DNA repair. Cell 129, 289–301 (2007).

    Article  CAS  Google Scholar 

  8. Sims, A.E. et al. FANCI is a second monoubiquitinated member of the Fanconi anemia pathway. Nat. Struct. Mol. Biol. 14, 564–567 (2007).

    Article  CAS  Google Scholar 

  9. Dorsman, J.C. et al. Identification of the Fanconi anemia complementation group I gene, FANCI. Cell. Oncol. 29, 211–218 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Andreassen, P.R., D'Andrea, A.D. & Taniguchi, T. ATR couples FANCD2 monoubiquitination to the DNA-damage response. Genes Dev. 18, 1958–1963 (2004).

    Article  CAS  Google Scholar 

  11. Machida, Y.J. et al. UBE2T is the E2 in the Fanconi anemia pathway and undergoes negative autoregulation. Mol. Cell 23, 589–596 (2006).

    Article  CAS  Google Scholar 

  12. Ciccia, A. et al. Identification of FAAP24, a Fanconi anemia core complex protein that interacts with FANCM. Mol. Cell 25, 331–343 (2007).

    Article  CAS  Google Scholar 

  13. Ling, C. et al. FAAP100 is essential for activation of the Fanconi anemia-associated DNA damage response pathway. EMBO J. 26, 2104–2114 (2007).

    Article  CAS  Google Scholar 

  14. Taniguchi, T. et al. S-phase-specific interaction of the Fanconi anemia protein, FANCD2, with BRCA1 and RAD51. Blood 100, 2414–2420 (2002).

    Article  CAS  Google Scholar 

  15. Matsushita, N. et al. A FancD2-monoubiquitin fusion reveals hidden functions of Fanconi anemia core complex in DNA repair. Mol. Cell 19, 841–847 (2005).

    Article  CAS  Google Scholar 

  16. Nijman, S.M. et al. The deubiquitinating enzyme USP1 regulates the Fanconi anemia pathway. Mol. Cell 17, 331–339 (2005).

    Article  CAS  Google Scholar 

  17. Howlett, N.G. et al. Biallelic inactivation of BRCA2 in Fanconi anemia. Science 297, 606–609 (2002).

    Article  CAS  Google Scholar 

  18. Xia, B. et al. Control of BRCA2 cellular and clinical functions by a nuclear partner, PALB2. Mol. Cell 22, 719–729 (2006).

    Article  CAS  Google Scholar 

  19. Cantor, S.B. et al. BACH1, a novel helicase-like protein, interacts directly with BRCA1 and contributes to its DNA repair function. Cell 105, 149–160 (2001).

    Article  CAS  Google Scholar 

  20. Levitus, M. et al. Heterogeneity in Fanconi anemia: evidence for two new genetic subtypes. Blood 103, 2498–2503 (2004).

    Article  CAS  Google Scholar 

  21. Seki, S. et al. A requirement of FancL and FancD2 monoubiquitination in DNA repair. Genes Cells 12, 299–310 (2007).

    Article  CAS  Google Scholar 

  22. Yamamoto, K. et al. Fanconi anemia protein FANCD2 promotes immunoglobulin gene conversion and DNA repair through a mechanism related to homologous recombination. Mol. Cell. Biol. 25, 34–43 (2005).

    Article  CAS  Google Scholar 

  23. Hirano, S. et al. Functional relationships of FANCC to homologous recombination, translesion synthesis, and BLM. EMBO J. 24, 418–427 (2005).

    Article  CAS  Google Scholar 

  24. Matsuoka, S. et al. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 316, 1160–1166 (2007).

    Article  CAS  Google Scholar 

  25. Kinoshita, E., Kinoshita-Kikuta, E., Takiyama, K. & Koike, T. Phosphate-binding tag, a new tool to visualize phosphorylated proteins. Mol. Cell. Proteomics 5, 749–757 (2006).

    Article  CAS  Google Scholar 

  26. Zou, L. & Elledge, S.J. Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science 300, 1542–1548 (2003).

    Article  CAS  Google Scholar 

  27. Sarkaria, J.N. et al. Inhibition of ATM and ATR kinase activities by the radiosensitizing agent, caffeine. Cancer Res. 59, 4375–4382 (1999).

    CAS  PubMed  Google Scholar 

  28. Oestergaard, V.H. et al. Deubiquitination of FANCD2 is required for DNA crosslink repair. Mol. Cell 28, 798–809 (2007).

    Article  CAS  Google Scholar 

  29. West, S.C. Molecular views of recombination proteins and their control. Nat. Rev. Mol. Cell Biol. 4, 435–445 (2003).

    Article  CAS  Google Scholar 

  30. Ho, G.P., Margossian, S., Taniguchi, T. & D'Andrea, A.D. Phosphorylation of FANCD2 on two novel sites is required for mitomycin C resistance. Mol. Cell. Biol. 26, 7005–7015 (2006).

    Article  CAS  Google Scholar 

  31. Wang, X. et al. Chk1-mediated phosphorylation of FANCE is required for the Fanconi anemia/BRCA pathway. Mol. Cell. Biol. 27, 3098–3108 (2007).

    Article  CAS  Google Scholar 

  32. Meetei, A.R. et al. A human ortholog of archaeal DNA repair protein Hef is defective in Fanconi anemia complementation group M. Nat. Genet. 37, 958–963 (2005).

    Article  CAS  Google Scholar 

  33. Hunter, T. The age of crosstalk: phosphorylation, ubiquitination, and beyond. Mol. Cell 28, 730–738 (2007).

    Article  CAS  Google Scholar 

  34. Harper, J.W. & Elledge, S.J. The DNA damage response: ten years after. Mol. Cell 28, 739–745 (2007).

    Article  CAS  Google Scholar 

  35. Yamamoto, K. et al. Fanconi anemia FANCG protein in mitigating radiation- and enzyme-induced DNA double-strand breaks by homologous recombination in vertebrate cells. Mol. Cell. Biol. 23, 5421–5430 (2003).

    Article  CAS  Google Scholar 

  36. Ishiai, M. et al. DNA cross-link repair protein SNM1A interacts with PIAS1 in nuclear focus formation. Mol. Cell. Biol. 24, 10733–10741 (2004).

    Article  CAS  Google Scholar 

  37. Kitao, H. et al. Functional interplay between BRCA2/FANCD1 and FANCC in DNA repair. J. Biol. Chem. 281, 21312–21320 (2006).

    Article  CAS  Google Scholar 

  38. Tomida, J., Kitao, H., Kinoshita, E. & Takata, M. Detection of phosphorylation on large proteins by western blotting using Phos-tag containing gel. Nat. Protocols, 10.1038/nprot.2008.232 (in the press).

Download references

Acknowledgements

We would like to thank T. Natsume (National Institute of Advanced Industrial Science and Technology, Japan), K. Komatsu (Kyoto University), H. Kurumizaka (Waseda University), J. Lin and J.W. Harper (Harvard Medical School) for reagents; R. Sasaki (Digital Microsystems) for advice and help in microscopy; K. Namikoshi for expert technical help; and H. Shimamoto and S. Arai for secretarial assistance. This work was supported in part by Grants-in-aid from the Ministry of Education, Science, Sports, and Culture of Japan (M.T.), by grants from Ministry of Health, Labour, and Welfare (M.T.), and by US National Institute of Allergy and Infectious Diseases grant 1U19A1067751 and US National Institutes of Health grants (S.J.E.). A. Smogorzewska is supported by T32CA09216 to the MGH Pathology Department. Financial support was also provided by The Novartis Foundation (Japan) for the Promotion of Science (M.T.) and The Uehara Memorial Foundation (M.T.). S.J.E. is funded by the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

M.T., A. Smogorzewska and S.J.E. conceived and designed the experiments; M.I., H.K., A. Saberi and E.U. performed most of the DT40 cell experiments; M.I., A.K. and S.T. performed microscopic analysis; E.K., E.K.-K., T.K. and J.T. designed and performed Phos-tag experiments; A. Smogorzewska performed human cell experiments; M.I. and H.K. analyzed the DT40 cell data; M.T., A. Smogorzewska and S.J.E. wrote the paper.

Corresponding author

Correspondence to Minoru Takata.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 (PDF 11181 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ishiai, M., Kitao, H., Smogorzewska, A. et al. FANCI phosphorylation functions as a molecular switch to turn on the Fanconi anemia pathway. Nat Struct Mol Biol 15, 1138–1146 (2008). https://doi.org/10.1038/nsmb.1504

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1504

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing