Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nickel coordination is regulated by the DNA-bound state of NikR

Abstract

The uptake of nickel in Escherichia coli and other microorganisms is transcriptionally regulated by the NikR repressor or its homologs. Here we report the structure of the high-affinity nickel-binding site in NikR and show that it responds dramatically to DNA binding. X-ray absorption spectroscopy reveals that nickel in the holo-NikR protein is bound in a novel four-coordinate planar site consisting of two histidines, one additional O- or N-donor ligand and one S-donor ligand. Site-directed mutation of His87, His89, Cys95 or Glu97 in NikR to alanine eliminates high-affinity nickel binding and abolishes DNA binding but maintains stable protein folding. An unanticipated feature of the NikR structure is that the nickel coordination responds to DNA binding. A six-coordinate nickel site composed of O- or N-donor ligands, but lacking cysteine, forms when NikR binds to operator DNA. Because nickel binding and DNA binding are mediated by different domains within NikR, a communication link between the two domains is implicated, consistent with the finding that the nickel-binding site in a fragment corresponding to the C-terminal domain of NikR is structurally distinct from that found in holo-NikR.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ni K-edge XANES spectra of E. coli NikR samples.
Figure 2: Unfiltered k3-weighted EXAFS data and fits from Table 1.
Figure 3: High-affinity nickel-binding motif in the C-domain of NikR.

Similar content being viewed by others

References

  1. Maroney, M.J. Structure/function relationships in nickel metallobiochemistry. Curr. Opin. Chem. Biol. 3, 188–199 (1999).

    Article  CAS  Google Scholar 

  2. Dobbek, H., Svetlitchnyi, V., Gremer, L., Huber, R. & Meyer, O. Crystal structure of a carbon monoxide dehydrogenase reveals a [Ni-4Fe-5S] cluster. Science 293, 1281–1285 (2001).

    Article  CAS  Google Scholar 

  3. Ermler, U., Grabarse, W., Shima, S., Goubeaud, M. & Thauer, R.K. Crystal structure of methyl-coenzyme M reductase: the key enzyme of biological methane formation. Science 278, 1457–1462 (1997).

    Article  CAS  Google Scholar 

  4. Volbeda, A. et al. Crystal structure of the nickel-iron hydrogenase from Desulfovibrio gigas. Nature 373, 580–587 (1995).

    Article  CAS  Google Scholar 

  5. Clugston, S.L. et al. Overproduction and characterization of a dimeric non-zinc glyoxalase I from Escherichia coli: evidence for optimal activation by nickel ions. Biochemistry 37, 8754–8763 (1998).

    Article  CAS  Google Scholar 

  6. Wu, L.F. & Mandrand, M.A. Microbial hydrogenases: primary structure, classification, signatures and phylogeny. FEMS Microbiol. Rev. 104, 243–269 (1993).

    Article  CAS  Google Scholar 

  7. Hausinger, R.P. Biochemistry of Nickel. (Plenum Press, New York; 1993).

    Book  Google Scholar 

  8. Navarro, C., Wu, L.-F. & Mandrand-Berthelot, M.A. The nik operon of Escherichia coli encodes a periplasmic binding-protein-dependent transport system for nickel. Mol. Microbiol. 9, 1181–1191 (1993).

    Article  CAS  Google Scholar 

  9. De Pina, K., Desjardin, V., Mandrand-Berthelot, M.A., Giordano, G. & Wu, L.F. Isolation and characterization of the nikR gene encoding a nickel-responsive regulator in Escherichia coli. J. Bacteriol. 181, 670–674 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Eitinger, T. & Mandrand-Berthelot, M.A. Nickel transport systems in microorganisms. Arch. Microbiol. 173, 1–9 (2000).

    Article  CAS  Google Scholar 

  11. Eitinger, T. & Freidrich, B. Microbial nickel transport and incorporation into hydrogenases. in Transition Metals in Microbial Metabolism (eds. Winkelman, G. & Carrano, C.) 235–256 (Harwood Academic Publishers, London; 1997).

    Google Scholar 

  12. Fu, C., Javedan, S., Moshiri, F. & Maier, R.J. Bacterial genes involved in incorporation of nickel into a hydrogenase enzyme. Proc. Natl. Acad. Sci. USA 91, 5099–5103 (1994).

    Article  CAS  Google Scholar 

  13. Maeda, M., Hidaka, M., Nakamura, A., Masaki, H. & Ouzumi, T. Cloning, sequencing, and expression of the thermophillic Bacillus sp. strain TB90 urease complex in Escherichia coli. J. Bacteriol. 176, 432–442 (1994).

    Article  CAS  Google Scholar 

  14. De Pina, K. et al. Purification and characterization of the periplasmic nickel-binding protein NikA of Escherichia coli K12. Eur. J. Biochem. 227, 857–865 (1995).

    Article  CAS  Google Scholar 

  15. Petersen, C. & Moller, L.B. Control of copper homeostasis in Escherichia coli by a P-type ATPase, CopA, and a MerR-like transcriptional activator, CopR. Gene 261, 289–298 (2000).

    Article  CAS  Google Scholar 

  16. Outten, C.E. & O'Halloran, T.V. Femptomolar sensitivity of metalloregulatory proteins controlling zinc homeostasis. Science 292, 2488–2492 (2001).

    Article  CAS  Google Scholar 

  17. Tao, X., Schiering, N., Zeng, H.-Y., Ringe, D. & Murphy, J.R. Iron, DtcR, and the regulation of diphtheria toxin expression. Mol. Microbiol. 14, 191–197 (1994).

    Article  CAS  Google Scholar 

  18. Chivers, P.T. & Sauer, R.T. NikR is a ribbon-helix-helix DNA-binding protein. Protein Sci. 8, 2494–2500 (1999).

    Article  CAS  Google Scholar 

  19. Chivers, P.T. & Sauer, R.T. NikR repressor: high-affinity nickel binding to the C-terminal domain regulates binding to operator DNA. Chem. Biol. 9, 1141–1148 (2002).

    Article  CAS  Google Scholar 

  20. Chivers, P.T. & Sauer, R.T. Regulation of high affinity nickel uptake in bacteria — Ni2+- dependent interaction of NikR with wild-type and mutant operator sites. J. Biol. Chem. 275, 19735–19741 (2000).

    Article  CAS  Google Scholar 

  21. Colpas, G.J. et al. X-ray spectroscopic studies of nickel complexes, with application to the structure of nickel sites in hydrogenases. Inorg. Chem. 30, 920–928 (1991).

    Article  CAS  Google Scholar 

  22. Davidson, G., Clugston, S.L., Honek, J.F. & Maroney, M.J. An XAS investigation of product and inhibitor complexes of Ni-containing GlxI from Escherichia coli: mechanistic implications. Biochemistry 40, 4569–4582 (2001).

    Article  CAS  Google Scholar 

  23. Liu, W. & Thorp, H.H. Bond valence sum analysis of metal-ligand bond lengths in metalloenzymes and model complexes. 2. Refined distances and other enzymes. Inorg. Chem. 32, 4102–4105 (1993).

    Article  CAS  Google Scholar 

  24. Berg, J.M. Zinc finger domains: from predictions to design. Acc. Chem. Res. 28, 14–19 (1995).

    Article  CAS  Google Scholar 

  25. Cotton, F.A. & Wilkinson, G. Anomalous properties of nickel(II) complexes: conformational changes. in Advanced Inorganic Chemistry 748–752 (John Wiley and Sons, New York; 1988).

    Google Scholar 

  26. Rosenfield, S.G., Berends, H.P., Gelmini, L., Stephan, D.W. & Mascharak, P.K. New octahedral thiolato complexes of divalent nickel: syntheses, structures, and properties of (Et4N)[Ni(SC5H4N)3] and (Ph4p)[Ni(SC4H3N2)3].CH3CN. Inorg. Chem. 26, 2792–2797 (1987).

    Article  CAS  Google Scholar 

  27. Ressler, T. WinXAS: a new software package not only for the analysis of energy-dispersive XAS data J. Physique IV 7, 269–270 (1997).

    CAS  Google Scholar 

  28. Rehr, J.J., Mustre de Leon, J., Zabinsky, S.I. & Albers, R.C. Theoretical X-ray absorption fine structure standards. J. Am. Chem. Soc 113, 5135–5140 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the Donors of The Petroleum Research Fund, administered by the American Chemical Society, the University of Massachusetts (M.J.M.) and the National Institutes of Health (R.T.S.). The National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory is supported by the U.S. Department of Energy, Division of Materials Sciences and Division of Chemical Sciences. Beamline X9B at NSLS is supported in part by the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Maroney.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carrington, P., Chivers, P., Al-Mjeni, F. et al. Nickel coordination is regulated by the DNA-bound state of NikR. Nat Struct Mol Biol 10, 126–130 (2003). https://doi.org/10.1038/nsb890

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb890

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing