Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A protein sequence that can encode native structure by disfavoring alternate conformations

Abstract

The linear sequence of amino acids contains all the necessary information for a protein to fold into its unique three-dimensional structure. Native protein sequences are known to accomplish this by promoting the formation of stable, kinetically accessible structures. Here we describe a Pro residue in the center of the third transmembrane helix of the cystic fibrosis transmembrane conductance regulator that promotes folding by a distinct mechanism: disfavoring the formation of a misfolded structure. The generality of this mechanism is supported by genome-wide transmembrane sequence analyses. Furthermore, the results provide an explanation for the increased frequency of Pro residues in transmembrane α-helices. Incorporation by nature of such 'negative folding determinants', aimed at preventing the formation of off-pathway structures, represents an additional mechanism by which folding information is encoded within the evolved sequences of proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: P205S mutant CFTR misfolds and aggregates in vivo.
Figure 2: Structure and integration of wild type and mutant CFTR m3.
Figure 3: Translocon-mediated integration of wild type and mutant CFTR m3.
Figure 4: Characterization of misfolded CFTR-m3.
Figure 5: Contextual importance of proline for integral membrane protein folding.
Figure 6: Mechanism by which Pro residues promote α-helical integral membrane protein folding.
Figure 7: Energetics of CFTR m3 folding and misfolding.

Similar content being viewed by others

References

  1. Sakai, H. & Tsukihara, T. Structures of membrane proteins determined at atomic resolution. J. Biochem. 124, 1051–1059 (1998).

    Article  CAS  Google Scholar 

  2. Jones, D.T., Taylor, W.R. & Thornton, J.M. A mutation data matrix for transmembrane proteins. FEBS Lett. 339, 269–275 (1994).

    Article  CAS  Google Scholar 

  3. Samatey, F.A., Xu, C. & Popot, J.-L. On the distribution of amino acid residues in transmembrane α-helix bundles. Proc. Natl. Acad. Sci. USA 92, 4577–4581 (1995).

    Article  CAS  Google Scholar 

  4. Wallin, E., Tsukihara, T., Yoshikawa, S., von Heijne, G. & Elofsson, A. Architecture of helix bundle membrane proteins: an analysis of cytochrome c oxidase from bovine mitochondria. Protein Sci. 6, 808–815 (1997).

    Article  CAS  Google Scholar 

  5. Brandl, C.J. & Deber, C.M. Hypothesis about the function of membrane-buried proline residues in transport proteins. Proc. Natl. Acad. Sci. USA 83, 917–921 (1986).

    Article  CAS  Google Scholar 

  6. von Heijne, G. Proline kinks in transmembrane α-helices. J. Mol. Biol. 218, 499–503 (1991).

    Article  CAS  Google Scholar 

  7. Sansom, M.S.P. Proline residues in transmembrane helices of channel and transport proteins: a molecular modelling study. Protein Eng. 5, 53–60 (1992).

    Article  CAS  Google Scholar 

  8. Williams, K.A. & Deber, C.M. Proline residues in transmembrane helices: structural or dynamic role? Biochemistry 30, 8919–8923 (1991).

    Article  CAS  Google Scholar 

  9. Lu, H., Marti, T. & Booth, P.J. Proline residues in transmembrane α-helices affect the folding of bacteriorhodopsin. J. Mol. Biol. 308, 437–446 (2001).

    Article  CAS  Google Scholar 

  10. Strader, C.D. et al. Identification of residues required for ligand binding to the β-adrenergic receptor. Proc. Natl. Acad. Sci. USA 84, 4384–4388 (1987).

    Article  CAS  Google Scholar 

  11. Sung, C.H., Davenport, C.M. & Nathans, J. Rhodopsin mutations responsible for autosomal dominant retinitis pigmentosa. Clustering of functional classes along the polypeptide chain. J. Biol. Chem. 268, 26645–26649 (1993).

    CAS  PubMed  Google Scholar 

  12. Wellner, M., Monden, I., Mueckler, M.M. & Keller, K. Functional consequences of proline mutations in the putative transmembrane segments 6 and 10 of the glucose transporter GLUT1. Eur. J. Biochem. 227, 454–458 (1995).

    Article  CAS  Google Scholar 

  13. Sheppard, D.N., Travis, S.M., Ishihara, H. & Welsh, M.J. Contribution of proline residues in the membrane-spanning domains of cystic fibrosis transmembrane conductance regulator to chloride channel function. J. Biol. Chem. 271, 14995–15001 (1996).

    Article  CAS  Google Scholar 

  14. Hong, S., Ryu, K.S., Oh, M.S., Ji, I. & Ji, T.H. Roles of transmembrane prolines and proline-induced kinks of the lutropin/choriogonadotropin receptor. J. Biol. Chem. 272, 4166–4171 (1997).

    Article  CAS  Google Scholar 

  15. Thomas, P.J., Qu, B.-H. & Pedersen, P.L. Defective protein folding as a basis of human disease. TIBS 20, 456–459 (1995).

    CAS  PubMed  Google Scholar 

  16. Riordan, J.R. et al. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245, 1066–1073 (1989).

    Article  CAS  Google Scholar 

  17. Wigley, W.C. et al. Dynamic association of proteasomal machinery with the centrosome. J. Cell Biol. 145, 481–490 (1999).

    Article  CAS  Google Scholar 

  18. Popot, J.L. & Engelman, D.M. Membrane protein folding and oligomerization: the two-stage model. Biochemistry 29, 4031–4037 (1990).

    Article  CAS  Google Scholar 

  19. Lemmon, M.A. & Engelman, D.M. Specificity and promiscuity in membrane helix interactions. Q. Rev. Biophys. 27, 157–218 (1994).

    Article  CAS  Google Scholar 

  20. White, S.H. & Wimley, W.C. Membrane protein folding and stability: physical principles. Annu. Rev. Biophys. Biomol. Struct. 28, 319–365 (1999).

    Article  CAS  Google Scholar 

  21. Gierasch, L.M., Lacy, J.E., Thompson, K.F., Rockwell, A.L. & Watnick, P.I. Conformations of model peptides in membrane-mimetic environments. Biophys. J. 37, 275–284 (1982).

    Article  CAS  Google Scholar 

  22. Chen, Y.H., Yang, J.T. & Chau, K.H. Determination of the helix and β form of proteins in aqueous solution by circular dichroism. Biochemistry 13, 3350–3359 (1974).

    Article  CAS  Google Scholar 

  23. Yang, J.T., Wu, C.S. & Martinez, H.M. Calculation of protein conformation from circular dichroism. Methods Enzymol. 130, 208–269 (1986).

    Article  CAS  Google Scholar 

  24. Bohm, G., Muhr, R. & Jaenicke, R. Quantitative analysis of protein far UV circular dichroism spectra by neural networks. Protein Eng. 5, 191–195 (1992).

    Article  CAS  Google Scholar 

  25. Jasanoff, A. & Fersht, A.R. Quantitative determination of helical propensities from trifluoroethanol titration curves. Biochemistry 33, 2129–2135 (1994).

    Article  CAS  Google Scholar 

  26. Mothes, W. et al. Molecular mechanism of membrane protein integration into the endoplasmic reticulum. Cell 89, 523–533 (1997).

    Article  CAS  Google Scholar 

  27. Hamman, B.D., Chen, J.C., Johnson, E.E. & Johnson, A.E. The aqueous pore through the translocon has a diameter of 40–60 Å during cotranslational protein translocation at the ER membrane. Cell 89, 535–544 (1997).

    Article  CAS  Google Scholar 

  28. Zerial, M., Huylebroeck, D. & Garoff, H. Foreign transmembrane peptides replacing the internal signal sequence of transferrin receptor allow its translocation and membrane binding. Cell 48, 147–155 (1987).

    Article  CAS  Google Scholar 

  29. Chang, X.B., Hou, Y.X., Jensen, T.J. & Riordan, J.R. Mapping of cystic fibrosis transmembrane conductance regulator membrane topology by glycosylation site insertion. J. Biol. Chem. 269, 18572–18575 (1994).

    CAS  PubMed  Google Scholar 

  30. Wigley, W.C., Vijayakumar, S., Jones, J.D., Slaughter, C. & Thomas, P.J. The transmembrane domain of CFTR: design, characterization and secondary structure of synthetic peptides m1–m6. Biochemistry 37, 844–853 (1998).

    Article  CAS  Google Scholar 

  31. Dong, A., Huang, P. & Caughey, W.S. Protein secondary structures in water from second-derivative amide I infrared spectra. Biochemistry 29, 3303–3308 (1990).

    Article  CAS  Google Scholar 

  32. Dobson, C.M. Protein misfolding, evolution and disease. TIBS 24, 329–332 (1999).

    CAS  PubMed  Google Scholar 

  33. LeVine, H. III . Thioflavin T interaction with synthetic Alzheimer's disease β-amyloid peptides: detection of amyloid aggregation in solution. Protein Sci. 2, 404–410 (1993).

    Article  CAS  Google Scholar 

  34. Richardson, J.S. & Richardson, D.C. Prediction of protein structure and the principles of protein conformation. (ed. Fasman, G.D.) 1–98 (Plenum, New York; 1989).

    Book  Google Scholar 

  35. Mitraki, A., Fane, B., Haase-Pettingell, C., Sturtevant, J. & King, J. Global suppression of protein folding defects and inclusion body formation. Science 253, 54–58 (1991).

    Article  CAS  Google Scholar 

  36. Zhou, Y. & Karplus, M. Folding of a model three-helix bundle protein: a thermodynamic and kinetic analysis. J. Mol. Biol. 293, 917–951 (1999).

    Article  CAS  Google Scholar 

  37. Hill, R.B. & DeGrado, W.F. A polar, solvent-exposed residue can be essential for native protein structure. Structure. Fold. Des. 8, 471–479 (2000).

    Article  CAS  Google Scholar 

  38. Wood, S.J., Wetzel, R., Martin, J.D. & Hurle, M.R. Prolines and amyloidogenicity in fragments of the Alzheimer's peptide β/A4. Biochemistry 34, 724–730 (1995).

    Article  CAS  Google Scholar 

  39. Moriarty, D.F. & Raleigh, D.P. Effects of sequential proline substitutions on amyloid formation by human amylin 20–29. Biochemistry 38, 1811–1818 (1999).

    Article  CAS  Google Scholar 

  40. Chou, P.Y. & Fasman, G.D. Empirical predictions of protein conformation. Annu. Rev. Biochem. 47, 251–276 (1978).

    Article  CAS  Google Scholar 

  41. Rost, B., Fariselli, P. & Casadio, R. Topology prediction for helical transmembrane proteins at 86% accuracy. Protein Sci. 5, 1704–1718 (1996).

    Article  CAS  Google Scholar 

  42. Li, S.-C. & Deber, C.M. A measure of helical propensity for amino acids in membrane environments. Nature Struct. Biol. 1, 368–373 (1994).

    Article  CAS  Google Scholar 

  43. Anfinsen, C.B. Principles that govern the folding of protein chains. Science 181, 223–230 (1973).

    Article  CAS  Google Scholar 

  44. Fandrich, M., Fletcher, M.A. & Dobson, C.M. Amyloid fibrils from muscle myoglobin. Nature 410, 165–166 (2001).

    Article  CAS  Google Scholar 

  45. Pertinhez, T.A. et al. Amyloid fibril formation by a helical cytochrome. FEBS Lett. 495, 184–186 (2001).

    Article  CAS  Google Scholar 

  46. Crowther, R.A. & Goedert, M. Abnormal tau-containing filaments in neurodegenerative diseases. J. Struct. Biol. 130, 271–279 (2000).

    Article  CAS  Google Scholar 

  47. Betsholtz, C. et al. Sequence divergence in a specific region of islet amyloid polypeptide (IAPP) explains differences in islet amyloid formation between species. FEBS Lett. 251, 261–264 (1989).

    Article  CAS  Google Scholar 

  48. Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank members of the Thomas and Rizo laboratories for valuable discussions, S. Madden and B. Riek for expert technical assistance, B. Rost for prediction of TM α-helices, and L. Gierasch, D. Hilgemann, E. Ross, B. Goldsmith, R. Ranganathan, S. Muallem and S. Sprang for helpful comments. This work was supported by research grants from the Cystic Fibrosis Foundation and the National Institutes of Health-NIDDK to P.J.T. P.H.T is supported by an NIH predoctoral training grant. M.J.C. is the recipient of a CF Foundation fellowship. P.J.T. is an Established Investigator of the American Heart Association.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip J. Thomas.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wigley, W., Corboy, M., Cutler, T. et al. A protein sequence that can encode native structure by disfavoring alternate conformations. Nat Struct Mol Biol 9, 381–388 (2002). https://doi.org/10.1038/nsb784

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb784

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing