Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The PWWP domain of mammalian DNA methyltransferase Dnmt3b defines a new family of DNA-binding folds

Abstract

The PWWP domain is a weakly conserved sequence motif found in >60 eukaryotic proteins, including the mammalian DNA methyltransferases Dnmt3a and Dnmt3b. These proteins often contain other chromatin-association domains. A 135-residue PWWP domain from mouse Dnmt3b (amino acids 223–357) has been structurally characterized at 1.8 Å resolution. The N-terminal half of this domain resembles a barrel-like five-stranded structure, whereas the C-terminal half contains a five-helix bundle. The two halves are packed against each other to form a single structural module that exhibits a prominent positive electrostatic potential. The PWWP domain alone binds DNA in vitro, probably through its basic surface. We also show that recombinant Dnmt3b2 protein (a splice variant of Dnmt3b) and two N-terminal deletion mutants (Δ218 and Δ369) have approximately equal methyl transfer activity on unmethylated and hemimethylated CpG-containing oligonucleotides. The Δ218 protein, which includes the PWWP domain, binds DNA more strongly than Δ369, which lacks the PWWP domain.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dnmt3 MTase family.
Figure 2: Structure of Dnmt3b2 PWWP domain.
Figure 3: DNA binding and methyl transfer activity of Dnmt3b2.
Figure 4: Comparison of PWWP domain with its structural homologs.
Figure 5: Views of defined elements in the Dnmt3b2 PWWP structure.
Figure 6: Sequence alignment of PWWP-containing proteins.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Bestor, T.H. The DNA methyltransferases of mammals. Hum. Mol. Genet. 9, 2395–2402 (2000).

    Article  CAS  Google Scholar 

  2. Wade, P.A. Methyl CpG binding proteins: coupling chromatin architecture to gene regulation. Oncogene 20, 3166–3173 (2001).

    Article  CAS  Google Scholar 

  3. Jones, P.A. & Takai, D. The role of DNA methylation in mammalian epigenetics. Science 293, 1068–1070 (2001).

    Article  CAS  Google Scholar 

  4. Yoder, J.A., Soman, N.S., Verdine, G.L. & Bestor, T.H. DNA (cytosine-5) methyltransferases in mouse cells and tisssues. Studies with a mechanism-based probe. J. Mol. Biol. 270, 385–395 (1997).

    Article  CAS  Google Scholar 

  5. Pradhan, S., Bacolla, A., Wells, R.D. & Roberts, R.J. Recombinant human DNA (cytosine-5) methyltransferase. I. Expression, purification, and comparison of de novo and maintenance methylation. J. Biol. Chem. 274, 33002–33010 (1999).

    Article  CAS  Google Scholar 

  6. Fatemi, M., Hermann, A., Pradhan, S. & Jeltsch, A. The activity of the murine DNA methyltransferase Dnmt1 is controlled by interaction of the catalytic domain with the N-terminal part of the enzyme leading to an allosteric activation of the enzyme after binding to methylated DNA. J. Mol. Biol. 309, 1189–1199 (2001).

    Article  CAS  Google Scholar 

  7. Dong, A. et al. Structure of human DNMT2, an enigmatic DNA methyltransferase homolog that displays denaturant-resistant binding to DNA. Nucleic Acids Res. 29, 439–448 (2001).

    Article  CAS  Google Scholar 

  8. Okano, M., Xie, S. & Li, E. Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nature Genet. 19, 219–220 (1998).

    Article  CAS  Google Scholar 

  9. Gowher, H. & Jeltsch, A. Enzymatic properties of recombinant Dnmt3a DNA methyltransferase from mouse: the enzyme modifies DNA in a non-processive manner and also methylates non-CpG sites. J. Mol. Biol. 309, 1201–1208 (2001).

    Article  CAS  Google Scholar 

  10. Li, E., Bestor, T.H. & Jaenisch, R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69, 915–926 (1992).

    Article  CAS  Google Scholar 

  11. Okano, M., Bell, D.W., Haber, D.A. & Li, E. DNA methyltransferase Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99, 247–257 (1999).

    Article  CAS  Google Scholar 

  12. Finnegan, E.J., Peacock, W.J. & Dennis, E.S. Reduced DNA methylation in Arabidopsis thaliana results in abnormal plant development. Proc. Natl. Acad. Sci USA 93, 8449–8454 (1996).

    Article  CAS  Google Scholar 

  13. Kakutani, T., Jeddeloh, J.A., Flowers, S.K., Munakata, K. & Richards, E.J. Developmental abnormalities and epimutations associated with DNA hypomethylation mutations. Proc. Natl. Acad. Sci. USA 93, 12406–12411 (1996).

    Article  CAS  Google Scholar 

  14. Ronemus, M.J., Galbiati, M., Ticknor, C., Chen, J. & Dellaporta, S.L. Demethylation-induced developmental pleiotropy in Arabidopsis. Science 273, 654–657 (1996).

    Article  CAS  Google Scholar 

  15. Bird, A.P. & Wolffe, A.P. Methylation-induced repression — belts, braces, and chromatin. Cell 99, 451–454 (1999).

    Article  CAS  Google Scholar 

  16. Riggs, A.D. & Pfeifer, G.P. X-chromosome inactivation and cell memory. Trends Genet. 8, 169–174 (1992).

    Article  CAS  Google Scholar 

  17. Shemer, R. & Razin, A. In Epigenetic mechanisms of gene regulation (eds Russo, V.E.A., Martienssen, R.A. & Riggs, A.D.) 215–229 (Cold Spring Harbor Laboratory Press, New York; 1996).

    Google Scholar 

  18. Siegfried, Z. & Cedar, H. DNA methylation: a molecular lock. Curr. Biol. 7, R305–R307 (1997).

    Article  CAS  Google Scholar 

  19. Xie, S., Wang, Z., Okano, M. & Li, E. Cloning, expression and chromosome locations of the human DNMT3 gene family. Gene 236, 87–95 (1999).

    Article  CAS  Google Scholar 

  20. Xu, G. et al. Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene. Nature 402, 187–191 (1999).

    Article  CAS  Google Scholar 

  21. Robertson, K. et al. The human DNA methyltransferases (DNMTs) 1, 3a and 3b: coordinate mRNA expression in normal tissues and overexperssion in tumors. Nucleic Acids Res. 27, 2291–2298 (1999).

    Article  CAS  Google Scholar 

  22. Saito, Y. et al. Expression of mRNA for DNA methyltransferases and methyl-CpG-binding proteins and DNA methylation status on CpG islands and pericentromeric satellite regions during human hepatocarcinogenesis. Hepatology 33, 561–568 (2001).

    Article  CAS  Google Scholar 

  23. Kanai, Y., Ushijima, S., Kondo, Y., Nakanishi, Y. & Hirohashi, S. DNA methyltransferases expression and DNA methylation of CpG islands and pericentromeric satellite regions in human colorectal and stomach cancers. Int. J. Cancer 91, 205–212 (2001).

    Article  CAS  Google Scholar 

  24. Mizuno, S. et al. Expression of DNA methyltransferases DNMT1, 3a, and 3b in normal hematopoiesis and in acute chronic myelogenous leukemia. Blood 97, 1172–1179 (2001).

    Article  CAS  Google Scholar 

  25. Bachman, K.E., Rountree, M.R. & Baylin, S.B. Dnmt3a and Dnmt3b are transcriptional repressors that exhibit unique localization properties to heterochromatin. J. Biol. Chem. 276, 32282–32287 (2001).

    Article  CAS  Google Scholar 

  26. Fuks, F., Burgers, W.A., Godin, N., Kasai, M. & Kouzarides, T. Dnmt3a binds decaetylases and is recruited by a sequence-specific repressor to silence transcription. EMBO J. 20, 2536–2544 (2001).

    Article  CAS  Google Scholar 

  27. Aoki, A. et al. Enzymatic properties of de novo type mouse DNA (cytosine-5) methyltransferases. Nucleic Acids Res. 29, 3506–3512 (2001).

    Article  CAS  Google Scholar 

  28. Stec, I., Nagl, S., van Ommen, G. & Dunnen, J. The PWWP domain: a potential protein-protein interaction domain in nuclear proteins influencing differentiation? FEBS Lett. 473, 1–5 (2000).

    Article  CAS  Google Scholar 

  29. Izumoto, Y., Kuroda, T., Harada, H., Kishimoto, T. & Nakamura, H. Hepatoma-derived growth factor belongs to a gene family in mice showing significant homology in the amino terminus. Biochem. Biophys. Res. Commun. 238, 26–32 (1997).

    Article  CAS  Google Scholar 

  30. Stec, I. et al. WHSC1, a 90 kb SET domain-containing gene, expressed in early development and homologous to a Drosophila dysmorphy gene maps in the Wolf-Hirschhorn syndrome critical region and is fused to IgH in t(4;14) multiple myeloma. Hum. Mol. Genet. 7, 1071–1082 (1998).

    Article  CAS  Google Scholar 

  31. Ramsahoye, R.H. et al. Non-CpG methylation is prevalent in embryonic stem cells and may be mediated by DNA methyltransferase 3a. Proc. Natl. Acad. Sci. USA 97, 5237–5242 (2000).

    Article  CAS  Google Scholar 

  32. Flynn, J., Glickman, J.F. & Reich, N.O. Murine DNA cytosine-C5 methyltransferase: pre-steady- and steady-state kinetic analysis with regulatory DNA sequences. Biochemistry 35, 7308–7315 (1996).

    Article  CAS  Google Scholar 

  33. Holm, L. & Sander, C. Protein structure comparison by alignment of distance matrices. J. Mol. Biol. 233, 123–138 (1993).

    Article  CAS  Google Scholar 

  34. Bottomley, M.J. et al. The SAND domain structure defines a novel DNA-binding fold in transcriptional regulation. Nature Struct. Biol. 8, 626–633 (2001).

    Article  CAS  Google Scholar 

  35. Selenko, P. et al. SMN Tudor domain structure and its interaction with the Sm proteins. Nature Struct. Biol. 8, 27–31 (2001).

    Article  CAS  Google Scholar 

  36. Marmorstein, R. Protein modules that manipulate histone tails for chromatin regulation. Nature Rev. Mol. Cell Biol. 2, 422–432 (2001).

    Article  CAS  Google Scholar 

  37. Hateboer, G. et al. BS69, a novel adenovirus E1A-associated protein that inhibits E1A transactivation. EMBO J. 14, 3159–3169 (1995).

    Article  CAS  Google Scholar 

  38. Thompson, K.A. et al. BR140, a novel zinc-finger protein with homology to the TAF250 subunit of TFIID. Biochem. Biophys. Res. Commun. 198, 1143–1152 (1994).

    Article  CAS  Google Scholar 

  39. Rea, S. et al. Regulation of chromation structure by site-specific histone H3 methyltransferases. Nature 406, 593–599 (2000).

    Article  CAS  Google Scholar 

  40. Nakayama, J., Rice, J. C., Strahl, B. D., Allis, C. D. & Grewal, S. I. Role of histone H3 lysine 9 methylation in epigenetic control of heterochromation assembly. Science 292, 110–113 (2001).

    Article  CAS  Google Scholar 

  41. Jeanmougin, F., Wurtz, J. M., Le Douarin, B., Chambon, P. & Losson, R. The bromodomain revisited. Trends Biochem. Sci. 22, 151–153 (1997).

    Article  CAS  Google Scholar 

  42. Dhalluin, C. et al. Structure and ligand of a histone acetyltransferase bromodomain. Nature 399, 491–496 (1999).

    Article  CAS  Google Scholar 

  43. Wojciak, J.M. & Clubb, R.T. Finding the function buried in SAND. Nature Struct. Biol. 8, 568–570 (2001).

    Article  CAS  Google Scholar 

  44. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  45. Terwilliger, T.C. & Berendzen, J. Automated MAD and MIR sructure solution. Acta Crystallogr. D 55, 849–861 (1999).

    Article  CAS  Google Scholar 

  46. Terwilliger, T.C. Maximum likelihood density modification. Acta Crystallogr. D 56, 965–972 (2000).

    Article  CAS  Google Scholar 

  47. Jones, T.A. & Kjeldgard, M. Electron-density map interpretation. Methods Enzymol. 277, 173–208 (1997).

    Article  CAS  Google Scholar 

  48. Brünger, A.T. X-PLOR. A system for X-ray crystallography and NMR, version 3.1 (Yale University, New Haven; 1992).

    Google Scholar 

  49. Carson, M. Ribbons. Methods Enzymol. 277, 493–505 (1997).

    Article  CAS  Google Scholar 

  50. Nicholls, A., Sharp, K.A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Protein Struct. Funct. Genet. 11, 281–296 (1991).

    Article  CAS  Google Scholar 

  51. Palombo, F. et al. GTBP, a 160-kilodalton protein essential for mismatch-binding activity in human cells. Science 268, 1912–1914 (1995).

    Article  CAS  Google Scholar 

  52. Min, J., Landry, J., Sternglanz, R. & Xu, R.-M. Crystal structure of a SIR2 homolog–NAD complex. Cell 105, 269–279 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Li for providing mouse Dnmt3b2 cDNA, S. Pradhan for providing full-length Dnmt1; K.D. Wilkinson for help with analysis of DNA binding titration curves; P. Kearney for constructing overexpression plasmids; and L. Zhou, J.R. Horton, D. Schneider and R.M. Sweet for help with X-ray data collection. We also thank R.M. Blumenthal, T.H. Bestor and P.A. Wade for their critical comments on the manuscript. The study was supported in part by the National Institutes of Health grant to X.C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaodong Cheng.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qiu, C., Sawada, K., Zhang, X. et al. The PWWP domain of mammalian DNA methyltransferase Dnmt3b defines a new family of DNA-binding folds. Nat Struct Mol Biol 9, 217–224 (2002). https://doi.org/10.1038/nsb759

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb759

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing