Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Calcium-induced conformational transition revealed by the solution structure of apo calmodulin

Abstract

The solution structure of Ca2+-free calmodulin has been determined by NMR spectroscopy, and is compared to the previously reported structure of the Ca2+-saturated form. The removal of Ca2+ causes the interhelical angles of four EF-hand motifs to increase by 36°–44°. This leads to major changes in surface properties, including the closure of the deep hydrophobic cavity essential for target protein recognition. Concerted movements of helices A and D with respect to B and C, and of helices E and H with respect to F and G are likely responsible for the cooperative Ca2+-binding property observed between two adjacent EF-hand sites in the amino- and carboxy-terminal domains.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. da Silva, A.C.R. & Reinach, F.C. Calcium binding induces conformational changes in muscle regulatory proteins. Trends biochem. Sci. 16, 53–57 (1991).

    PubMed  Google Scholar 

  2. Means, A.R., VanBerkum, M.F.A., Bagchi, I., Lu, K.P. & Rasmussen, C.D. Regulatory functions of calmodulin. Pharmac. Ther. 50, 255–270 (1991).

    CAS  Google Scholar 

  3. Vogel, H.J. Calmodulin: a versatile calcium mediator protein. Biochem. Cell Biol. 72, 357–376 (1994).

    CAS  PubMed  Google Scholar 

  4. James, P., Vorherr, T. & Carafoli, E. Calmodulin-binding domains: just two faced or multi-faceted? Trends biochem. Sci. 20, 38–42 (1995).

    CAS  PubMed  Google Scholar 

  5. Nakayama, S. & Kretsinger, R.H. Evolution of the EF-hand family of proteins. A. Rev. Biophys. biomol. Struct. 23, 473–507 (1994).

    CAS  Google Scholar 

  6. Ikura, M. et al. Nuclear magnetic resonance studies on calmodulin: calcium-induced conformational change. Biochemistry 22, 2573–2579 (1983).

    CAS  PubMed  Google Scholar 

  7. Andersson, A., Forsén, S., Thulin, E. & Vogel, H.J. Cadmium-113 nuclear magnetic resonance studies of proteolytic fragments of calmodulin: assignment of strong and weak cation binding sites. Biochemistry 22, 2309–2313 (1983).

    CAS  PubMed  Google Scholar 

  8. Dalgarno, D.C. et al. 1H NMR studies of calmodulin: resonance assignment by use of tryptic fragments. Eur. J. Biochem. 138, 281–289 (1984).

    CAS  PubMed  Google Scholar 

  9. Minowa, O. & Yagi, K. Calcium binding to tryptic fragments of calmoduin. J. Biochem. (Tokyo) 96, 1175–1182 (1984).

    CAS  Google Scholar 

  10. Klee, C.B. Interaction of calmodulin with Ca2+ and target proteins, in Calmodulin (eds Cohen, P. & Klee, C.B.) 35–56 (Elsevier, New York, NY, 1998).

    Google Scholar 

  11. Linse, S., Helmersson, A. & Forsén, S. Calcium binding to calmodulin and its globular domains. J. biol. Chem. 266, 8050–8054 (1991).

    CAS  PubMed  Google Scholar 

  12. Babu, Y.S. et al. Three–dimensional structure of calmodulin. Nature 315 37–40 (1985).

    CAS  PubMed  Google Scholar 

  13. Kretsinger, R.H., Rudnick, S.E. & Weissman, L.J. Crystal structure of calmodulin. J. Inorg. Biochem. 28, 289–302 (1986).

    CAS  PubMed  Google Scholar 

  14. Ikura, M. et al. Solution structure of a calmodulin target peptide complex by multidimensional NMR. Science 256, 632–638 (1992).

    CAS  PubMed  Google Scholar 

  15. Meador, W.E., Means, A.R. & Quiocho, F.A. Modulation of calmodulin plasticity in molecular recognition on the basis of crystal structures. Science 262, 1718–1721 (1993).

    CAS  PubMed  Google Scholar 

  16. Meador, W.E., Means, A.R. & Quiocho, F.A. Target enzyme recognition by calmodulin: 2.4Å structure of a calmodulin-peptide complex. Science 257, 1251–1255 (1992).

    CAS  PubMed  Google Scholar 

  17. Afshar, M. et al. Investigating the high affinity and low sequence specificity of calmodulin binding to its targets. J. molec. Biol. 244, 554–571 (1994).

    CAS  PubMed  Google Scholar 

  18. Ikura, M. et al. Secondary structure and side–chain 1H and 13C resonance assignments of calmodulin in solution by heteronuclear multidimensional NMR spectroscopy. Biochemistry 30, 9216–9228 (1991).

    CAS  PubMed  Google Scholar 

  19. Barbato, G., Ikura, M., Kay, L.E., Pastor, R.W. & Bax, A. Backbone dynamics of calmodulin studied by 15N relaxation using inverse detected two-dimensional NMR spectroscopy: the central helix is flexible. Biochemistry 31, 5269–5278 (1992).

    CAS  Google Scholar 

  20. Herzberg, O. & James, M.N.G. Refined crystal structure of troponin C from turkey skeletal muscle at 2.0Å resolution. J. molec. Biol. 203, 761–779 (1988).

    CAS  PubMed  Google Scholar 

  21. Skelton, N.J., Kördel, J., Akke, M., Forsén, S. & Chazin, W.J. Signal transduction versus buffering activity in Ca2+–binding proteins. Nature struct. Biol. 1, 239–245 (1994).

    CAS  PubMed  Google Scholar 

  22. Finn, B.E., Drakenberg, T. & Forsén, S. The strucutre of apocalmodulin: a 1H NMR examination of the carboxy–terminal domain. FEBS Lett. 336, 368–374 (1993).

    CAS  PubMed  Google Scholar 

  23. Babu, Y.S., Bugg, C.E. & Cook, W.J. Structure of calmodulin refined at 2.2Å resolution. J. molec. Biol. 204, 191–204 (1988).

    CAS  PubMed  Google Scholar 

  24. Wüthrich, K. NMR of Proteins and Nucleic Acids (John Wiley & Sons, Inc., New York, NY, 1986).

    Google Scholar 

  25. Gronenborn, A.M. & Clore, G.M. Identification of N-terminal helix capping boxes by means of 13C chemical shifts. J. biomolec. NMR 4, 455–458 (1994).

    CAS  Google Scholar 

  26. Strynadka, N.C.J. & James, M.N.G. Two trifluoperazine-binding sites on calmodulin predicted from comparative molecular modeling with troponin C. Proteins: Struct. Fund. Genet. 3, 1–17 (1988).

    CAS  Google Scholar 

  27. Findlay, W.A. & Sykes, B.D. 1H–NMR resonance assignments, secondary structure, and global fold of the TR1C fragment of turkey skeletal muscle troponin C in the calcium–free state. Biochemistry 32, 3461–3467(1993).

    CAS  PubMed  Google Scholar 

  28. Ames, J.B., Tanaka, T., Stryer, L. & Ikura, M. Secondary structure of myristoylated recoverin determined by three-dimensional heteronuclear NMR: implications for the calcium-myristoyl switch. Biochemistry 33, 10743–10753 (1994).

    CAS  PubMed  Google Scholar 

  29. Tanaka, T., Ames, J.B., Harvey, T.S., Stryer, L. & Ikura, M. Sequestration of the membrane-targeting myristoyl group of recoverin in the calcium-free state. Nature 376, 444–447 (1995).

    CAS  PubMed  Google Scholar 

  30. Spera, S., Ikura, M. & Bax, A. Measurement of the exchange rates of rapidly exchanging amide protons: application to the study of calmodulin and its complex with a myosin light chain kinase fragment. J. biomolec. NMR 1, 155–165 (1991).

    CAS  Google Scholar 

  31. Martin, S.R. & Bayley, P.M. The effects of Ca2+ and Cd2+ on the secondary and tertiary structure of bovine testis calmodulin. Biochem. J. 238, 485–490 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Tjandra, N., Kuboniwa, H., Ren, H. & Bax, A. Rotational dynamics of calcium-free calmodulin studied by 15N NMR relaxation measurements. Eur. J. Biochem. 230, 1014–1024 (1995).

    CAS  PubMed  Google Scholar 

  33. Heidorn, D.B. & Trewhella, J. Comparison of the crystal and solution structures of calmodulin and troponin C. Biochemistry 27, 909–915 (1988).

    CAS  PubMed  Google Scholar 

  34. Akke, M., Skelton, N.J., Kördel, J., Palmer, A.G. III & Chazin, W.J. Effects of ion binding on the backbone dynamics of calbindin D9k determined by 15N NMR relaxation. Biochemistry 32, 9832–9844 (1993).

    CAS  PubMed  Google Scholar 

  35. Gagné, S.M., Tsuda, S., Li, M.X., Smillie, L.B. & Sykes, B.D. Structures of the apo and calcium troponin-C regulatory domains: The muscle contraction switch. Nature struct. Biol. 2, 784–789 (1995).

    PubMed  Google Scholar 

  36. Linse, S. & Forsén, S. Determinants that govern high–affinity calcium binding. Adv. in Second Messenger and Phosphoprotein Research 30, 89–151 (1995).

    CAS  Google Scholar 

  37. Strynadka, N.C.J. & James, M.N.G. Towards an understanding of the effect of calcium on protein structure and function. Curr. Opin. struct. Biol. 1, 905–914 (1991).

    CAS  Google Scholar 

  38. Stemmer, P.M. & Klee, C.B. Dual calcium ion regulation of calcineurin by calmodulin and calcineurin B. Biochemistry 33, 6859–6866 (1994).

    CAS  PubMed  Google Scholar 

  39. Finn, E.B. & Forsén, S. The evolving model of calmodulin structure, function and activation. Structure 3, 7–11 (1995).

    CAS  PubMed  Google Scholar 

  40. Apel, E.D. & Storm, D.R. Functional domains of neuromodulin (GAP–43). Persp. dev. Neurobiol. 1, 3–11 (1992).

    CAS  Google Scholar 

  41. Swanljung–Collins, H. & Collins, J.H. Brush border myosin I has a calmodulin/phosphatidylserine switch and tail actin–binding. Adv. exp. med. Biol. 358, 205–213 (1994).

    PubMed  Google Scholar 

  42. Zhu, T. & Ikebe, M. A novel myosin I from bovine adrenal gland. FEBS Lett. 339, 31–36 (1994).

    CAS  PubMed  Google Scholar 

  43. Chapman, E.R., Au, D., Alexander, K.A., Nicolson, T.A. & Storm, D.R. Characterization of the calmodulin binding domain of neuromodulin: functional significance of serine 41 and phenylalanine 42. J. biol. Chem. 266, 207–213 (1991).

    CAS  PubMed  Google Scholar 

  44. Urbauer, J.L., Short, J.H., Dow, L.K. & Wand, A.J. Structural analysis of a novel interaction by calmodulin: High-affinity binding of a peptide in the absence of calcium. Biochemistry 34, 8099–8109 (1995).

    CAS  PubMed  Google Scholar 

  45. O'Neil, K.T. & DeGrado, W.F. How calmodulin binds its targets: sequence independent recognition of amphiphilic a-helices. Trends biochem. Sci. 15, 59–64 (1990).

    CAS  PubMed  Google Scholar 

  46. Zhang, M., Li, M., Wang, J.H. & Vogel, H.J. The effect of Met → Leu mutations on calmodulin's ability to activate cyclic nucleotide phosphodiesterase. J. biol. Chem. 269, 15546–15552 (1994).

    CAS  PubMed  Google Scholar 

  47. Gellman, S.H. On the role of methionine residues in the sequence–independent recognition of nonpolar protein surfaces. Biochemistry 30, 6633–6636 (1991).

    CAS  PubMed  Google Scholar 

  48. Zhang, M. & Vogel, H.J. Two-dimensional NMR studies of selenomethionyl calmodulin. J. molec. Biol. 239, 545–554 (1994).

    CAS  PubMed  Google Scholar 

  49. Ikura, M., Kay, L.E. & Bax, A. A novel approach for sequential assignment of 1H, 13C, and 15N spectra of larger proteins: heteronuclear triple resonance three dimensional NMR spectroscopy. Application to calmodulin. Biochemistry 29, 4659–4667 (1990).

    CAS  PubMed  Google Scholar 

  50. Bax, A. & Pochapsky, S.S. Optimized recording of heteronuclear multidimensional NMR spectra using pulsed field gradients. J. magn. Res. 99, 638–643 (1992).

    CAS  Google Scholar 

  51. Kay, L.E., Keifer, P. & Saarinen, T. Pure absorption gradient enhanced heteronuclear single quantum correlation spectroscopy with improved sensitivity. J. Am. chem. Soc. 114, 10663–10665 (1992).

    CAS  Google Scholar 

  52. Wittekind, M. & Mueller, L. HNCACB: A high sensitivity 3D NMR experiment to correlate amide proton and nitrogen resonances with the alpha and beta carbon resonances in proteins. J. magn. Res. B101, 201–205 (1993).

    Google Scholar 

  53. Grzesiek, S. & Bax, A. Correlating backbone amide and sidechain resonances in larger proteins by multiple relayed triple resonance NMR. J. Am. chem. Soc. 114, 6291–6293 (1992).

    CAS  Google Scholar 

  54. Kay, L.E., Ikura, M., Tschudin, R. & Bax, A. Three-dimensional triple-resonance NMR spectroscopy of isotopically enriched proteins. J. magn. Res. 89, 496–514 (1990).

    CAS  Google Scholar 

  55. Kay, L.E. Pulsed-field gradient-enhanced three–dimensional NMR experiment for correlating 13Cα/β, 13C′, and 1Hα chemical shifts in uniformly 13C-labeled proteins dissolved in H2O. j. Am. chem. Soc. 115, 2055–2057 (1993).

    CAS  Google Scholar 

  56. Grzesiek, S., Anglister, J. & Bax, A. Correlation of backbone amide and aliphatic side-chain resonances in 13C/15N-enriched proteins by isotropic mixing of 13C magnetization. J. magn. Res. B101, 114–119 (1993).

    Google Scholar 

  57. Bax, A., Clore, G.M. & Gronenborn, A.M. 1H-1H correlation via isotropic mixing of 13C magnetization, a new three-dimensional approach for assigning 1H and 13C spectra of 13C-enriched proteins. J. magn. Res. 88, 425–431 (1990).

    CAS  Google Scholar 

  58. Delaglio, F. NMRPipe System of Software (National Institutes of Health, Bethesda, MD, 1993).

    Google Scholar 

  59. Garrett, D.S., Powers, R., Gronenborn, A.M. & Clore, G.M. A common sense approach to peak picking in two-, three-, and four-dimensional spectra using automatic computer analysis of contour diagrams. J. magn. Res. 95, 214–220 (1991).

    CAS  Google Scholar 

  60. Kay, L.E. & Bax, A. New methods for the measurement of NH-CαH coupling constants in 15N-labeled proteins. J. magn. Res. 86, 110–126 (1990).

    CAS  Google Scholar 

  61. Zuiderweg, E.R.P., Boelens, R. & Kaptein, R. Stereospecific assignments of 1H methyl lines and conformation of valyl residues in the lac repressor headpiece. Biopolymers 24, 601–610 (1985).

    CAS  Google Scholar 

  62. Pascal, S.M., Muhandiram, D.R., Yamazaki, T., Forman-Kay, J.D. & Kay, L.E. Simultaneous acquisition of 15N- and 13C-edited NOE spectra of proteins dissolved in H2O. J. magn. Res. B103, 197–201 (1994).

    Google Scholar 

  63. Muhandiram, D.R., Farrow, N., Xu, G.Y., Smallcombe, S.J. & Kay, L.E. A gradient 13C NOESY-HSQC experiment for recording NOESY spectra of 13C-labeled proteins dissolved in H2O. J. magn. Res. B102, 317–321 (1993).

    Google Scholar 

  64. Zhang, O., Kay, L.E., Olivier, J.P. & Forman–Kay, J.D. Backbone 1H and 15N resonance assignments of the N-terminal SH3 domain of drk in folded and unfolded states using enhanced–sensitivity pulsed field gradient NMR techniques. j. biomolec. NMR 4, 845–858 (1994).

    CAS  Google Scholar 

  65. Wishart, D.S. & Sykes, B.D. Chemical shifts as a tool for structure determination. Meth. Enzym. 239, 363–392 (1994).

    CAS  PubMed  Google Scholar 

  66. Nilges, M., Gronenborn, A.M., Brünger, A.T. & Clore, G.M. Determination of three-dimensional structures of proteins by simulated annealing with interproton distance restraints. Application to crambin, potato carboxypeptidase inhibitor and barley serine proteinase inhibitor 2. Prot. Engng. 2, 27–38 (1988).

    CAS  Google Scholar 

  67. Brünger, A.T. X-PLOR Version 3.1. A system for X–ray crystallography and NMR (Yale Univ. Press, New Haven, CT, 1992).

    Google Scholar 

  68. Bagby, S., Harvey, T.S., Eagle, S.G., Inouye, S. & Ikura, M. NMR-derived three-dimensional solution structure of protein S complexed with calcium. Structure 2, 107–122 (1994).

    CAS  PubMed  Google Scholar 

  69. Nicholls, A. GRASP: graphical representation and analysis of surface properties (Columbia University, New York, NY, 1992).

    Google Scholar 

  70. DeLano, W.L. & Brünger, A.T. Helix packing in proteins: prediction and energetic analysis of dimeric, trimeric, and tetrameric GCN4 coiled coil structures. Proteins: Struct. Funct. Genet. 20, 105–123 (1994).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, M., Tanaka, T. & Ikura, M. Calcium-induced conformational transition revealed by the solution structure of apo calmodulin. Nat Struct Mol Biol 2, 758–767 (1995). https://doi.org/10.1038/nsb0995-758

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0995-758

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing