Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The metal-ion-free oxidoreductase from Streptomyces aureofaciens has an α/β hydrolase fold

Abstract

The crystal structure of the bromoperoxidase A2 from Streptomyces aureofaciens (ATCC 10762) has been determined by isomorphous replacement and refined to 2.05 Å resolution with an R-value of 18.4%. The enzyme catalyzes the bromination of organic compounds in the presence of bromide and peroxide. The structure confirms the absence of cofactors such as metal ions or haem groups and shows the general topology of the α/β hydrolase fold. The active centre is at the end of a deep pocket and includes a catalytic triad of Ser 98, Asp 228 and His 257. The active centre is connected by a narrow tunnel to a second pocket on the enzyme surface.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Morris, D.R., & Hager, L.P. Chloroperoxidase. Isolation and properties of the crystalline glycoprotein. J. biol. Chem. 241, 1763–1768 (1966).

    CAS  PubMed  Google Scholar 

  2. Liu, T.N.E. et al. Isolation and characterization of a novel nonheme chloroperoxidase. Biochem. biophys. Res. Commun. 142, 329–333 (1987).

    Article  CAS  Google Scholar 

  3. Manthey, J.A., & Hager, L.P. Purification and properties of bromoperoxidase from Penicillus capitatus. J. biol. Chem. 256, 11232–11238 (1981).

    CAS  PubMed  Google Scholar 

  4. Vilter, H. Peroxidase from Phaeophyceae: a vanadium (V)-dependent peroxidase from Ascophyllum nodosum. Phytochemistry, 23, 1387–1380 (1984).

    Article  CAS  Google Scholar 

  5. van Pée, K.-H., & Lingens, F. Purification and molecular and catalytic properties of bromoperoxidase from Streptomyces phaeochromogenes. J. gen. Microbiol. 131, 1911–1916 (1985).

    PubMed  Google Scholar 

  6. van Pée, K.-H., Sury, G., & Lingens, F. purification and properties of a nonheme bromoperoxidase from Streptomyces aureofaciens. Hoppe-Seyler biol. Chem. 368, 5890–5894 (1987).

    Article  Google Scholar 

  7. Dawson, J.H., & Sono, M. Cytochrom P-450 and chloroperoxidase: thiolate ligated heme enzymes, spectroscopic determination of their active site structures and mechanistic implications of thiolate ligation. Chem. Rev. 87, 1255–1276 (1987).

    Article  CAS  Google Scholar 

  8. De Boer, E., van Kooyk, Y., Tromp, M.G.M., Plat, H., & Wever, R. Bromoperoxidase from Ascophyllum nodosum: a novel class of enzymes containing vanadium as a prostetic group?. Biochim. biophys. Acta 869, 48–53 (1986).

    Article  CAS  Google Scholar 

  9. Wiesner, W., van Pée, K.-H. & Lingens, F. Purification and characterization of a novel bacterial non-heme chloroperoxidase from Pseudomonas pyrrocinia. J. Biol. Chem. 263, 13725–13732 (1988).

    CAS  PubMed  Google Scholar 

  10. Bantleon, R., Altenbuchner, J., & van Pée, K.-H. Chloroperoxidase from Streptomyces lividans: isolation and characterization of the enzyme and the corresponding gene. J. Bacteriol. 176, 2339–2347 (1994).

    Article  CAS  Google Scholar 

  11. Neidleman, S.L. & Geigert, J. in Biohalogenation: Principles, basic roles and applications (Ellis Horwood, Chichester, 1986).

    Google Scholar 

  12. de Boer, E., & Wever, R. The reaction mechanism of the novel vanadium-bromoperoxidase. J. biol. Chem. 263, 12326–12332 (1988).

    CAS  PubMed  Google Scholar 

  13. Haag, T., Lingens, F., van Pee, K.-H. A metal-ion and cofactor independent enzymatic redox reaction: halogenation by bacterial nonheme haloperoxidases. Angew. Chem. Int. Ed. Engl. 30, 1487–1488 (1991).

    Article  Google Scholar 

  14. Sobek, H. et al. Crystallization and preliminary X-ray data of bromoperoxidase from Streptomyces aureofaciens ATCC 10762. J. molec. Biol. 221, 35–37 (1991).

    Article  CAS  Google Scholar 

  15. Ollis, D.L. et al. The α/β hydrolase fold. Prot. Engng. 5, 197–211 (1992).

    Article  CAS  Google Scholar 

  16. Sussman, J.L. et al. Atomic structure of acetylcholinesterase from Torpedo californica: aprototypic acetylcholin-binding protein. Science 253, 872–879 (1991).

    Article  CAS  Google Scholar 

  17. Bernstein, F.C. et al. The Protein Data Bank: a computer-based archival file for macromolecular structures. J. molec. Biol. 112, 535–542 (1977).

    Article  CAS  Google Scholar 

  18. Franken, S.M., Rozeboom, H.J., Kalk, K.H., & Dijkstra, B.W. Crystal structure of haloalkane dehalogenase: an enzyme to detoxify halogenated alkanes. EMBO J. 10, 1297–1302 (1991).

    Article  CAS  Google Scholar 

  19. Derewenda, U., Brzozowski, A.M., Lawson, D.M., & Derewenda, Z.S Catalysis at the interface: The anatomy of a conformational change in a triglyceride lipase. Biochemistry 31, 1532–1541 (1992).

    Article  CAS  Google Scholar 

  20. Jones, T.A., Zou, J.-Y., Cowan, S.W., & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A47, 110–119 (1991).

    Article  CAS  Google Scholar 

  21. Genetics Computer Group Program Manual for the GCG Package, Version 7 (575 Science Drive, Madison, Wisconsin, 1991).

  22. Ookuni, I. & Fry, A. Hydrogen chloride catalyzed oxygen-18 exchange between para-substituted phenyl methyl sulfoxides and water. J. org. Chem. 36, 4097–4101 (1971).

    Article  Google Scholar 

  23. Norne, J.-E., Lilja, H., Lindman, B., Einarsson, R., & Zeppezauer, M. Pt(CN)42- and Au(CN)2-: potential general probes for anion-binding sites of proteins. Eur. J. Biochem. 59, 463–473 (1975).

    Article  CAS  Google Scholar 

  24. Weng, M., Pfeifer, O., Krauss, S., Lingens, F. & van Pée, K.-H. Purification, characterization and comparison of non-haem bromoperoxidases from Streptomyces aureofaciens ATCC 10762. J. gen. Microbiol. 137, 2539–2546 (1991).

    Article  CAS  Google Scholar 

  25. Howard, A.J. et al. The use of an imaging proportional counter in macromolecular crystallography. J. Appl. Crystallogr. 20, 383–387 (1987).

    Article  CAS  Google Scholar 

  26. CCP4 The SERC (UK) collaborative computing project no. 4, a suite of programs for protein crystallography (Daresbury Laboratory, UK, 1979).

  27. Cowtan, K.D., & Main, P. Improvement of macromolecular electron-density maps by the simultaneous application of real and reciprocal space constraints. Acta Crystallogr. D49, 148–157 (1993).

    CAS  Google Scholar 

  28. Jones, T.A A graphics model building and refinement system for macromolecules. J. appl. Crystallosgr. 11, 268–272 (1978).

    Article  CAS  Google Scholar 

  29. Brünger, A.T., Kuriyan, J., & Karplus, M. Refinement by simulated annealing. Science 235, 458–460 (1987).

    Article  Google Scholar 

  30. Kabsch, W., & Sander, S. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22, 2577–2637 (1983).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hecht, H., Sobek, H., Haag, T. et al. The metal-ion-free oxidoreductase from Streptomyces aureofaciens has an α/β hydrolase fold. Nat Struct Mol Biol 1, 532–537 (1994). https://doi.org/10.1038/nsb0894-532

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0894-532

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing