Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A new DNA-binding motif in the Skn-1 binding domain–DNA complex

Abstract

The DNA-binding domain of Skn-1, a developmental transcription factor that specifies mesoderm in C. elegans. is shown by X-ray crystallography to have a novel fold in which a compact, monomeric, four-helix unit organizes two DNA-contact elements. At the C-terminus, a helix extends from the domain to occupy the major groove of DNA in a manner similar to bZip proteins. Skn-1, however, lacks the leucine zipper found in all bZips. Additional contacts with the DNA are made by a short basic segment at the N-terminus of the domain, reminiscent of the ‘homeodomain arm’.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bowerman, B., Eaton, B.A. & Priess, J.R. Skn-1, a maternally expressed gene required to specify the fate of ventral blastomeres in the early C. elegans embryo. Cell 68, 1061–1075 (1992).

    Article  CAS  Google Scholar 

  2. Bowerman, B., Draper, B.W., Mello, C.C. & Priess, J.R. The maternal gene skn-1 encodes a protein that is distributed unequally in early C. elegans embryos. Cell 74, 1–20 (1993).

    Article  Google Scholar 

  3. Blackwell, T.K., Bowerman, B., Priess, J.R. & Weintraub, H. Formation of a monomeric DNA binding domain of Skn-1 bZIP and homeodomain elements. Science 266, 621–628 (1994).

    Article  CAS  Google Scholar 

  4. Carroll, A.S. et al. SKN-1 domain folding and basic region monomer stabilization upon DNA binding. Genes Devel. 11, 2227–2238 (1997).

    Article  CAS  Google Scholar 

  5. Pal, S. et al. Skn-1: Evidence for a bipartite recognition helix in DNA binding. Proc. Natl. Acad. Sci. USA 94, 5556–5561 (1997).

    Article  CAS  Google Scholar 

  6. Patel, L., Abate, C. & Curran, T. Altered protein conformation on DNA binding by Fos and Jun. Nature 347, 572–575 (1990).

    Article  CAS  Google Scholar 

  7. Weiss, M.A. et al. Folding transition in the DNA-binding domain of GCN4 on specific binding to DNA. Nature 347, 575–578 (1990).

    Article  CAS  Google Scholar 

  8. O′Neil, K.T., Shuman, J.D., Ampe, C. & DeGrado, W.F. DNA-induced increase in the α-helical content of C/EBP and GCN4. Biochemistry 30, 9030–9034 (1991).

    Article  Google Scholar 

  9. Santiago-Rivera, Z.I., Williams, J.S., Gorenstein, D.G. & Andrisani, O.M. Bacterial expression and characterization of the CREB bZip module: Circular dichroism and 2D 1H-NMR studies. Prot. Sci. 2, 1461–1471 (1993).

    Article  CAS  Google Scholar 

  10. Granato, M., Schnabel, H. & Schnabel, R. Genes of an organ: molecular analysis of the pha-1 gene. Development 120, 3005–3017 (1994).

    CAS  PubMed  Google Scholar 

  11. Mansukhani, A., Gunatne, P.H., Sherwood, P.W., Smeath, B.J. & Goldberg, M.L. Nucleotide sequence and structural analysis of the zeste locus of Drosophila melanogaster. Mol. Gen. Genet. 211, 121–128 (1988).

    Article  CAS  Google Scholar 

  12. Smoller, D. et al. The Drosophila neurogenic locus mastermind encodes a nuclear protein unusually rich in amino acid homopolymers. Genes & Dev. 4, 1688–1700 (1990).

    Article  CAS  Google Scholar 

  13. Kissinger, C.R., Liu, B., Martin-Blanco, E., Kornberg, T.B. & Pabo, C.O. Crystal structure of an engrailed homeodomain-DNA complex at 2.8 Å resolution: A framework for understanding homeodomain-DNA interactions. Cell 63, 579–590 (1990).

    Article  CAS  Google Scholar 

  14. Wolberger, C., Vershon, A.K., Liu, B., Johnson, A.D. & Pabo, C.O. Crystal structure of a MATα2 homeodomain–operator complex suggests a general model for homeodomain-DNA interactions. Cell 67, 517–528 (1991).

    Article  CAS  Google Scholar 

  15. Anderson, W.F., Ohlendorf, D.H., Takeda, Y. & Matthews, B.W. Structure of the cro represser from bacteriophage λ and its interaction with DNA. Nature 290, 754–758 (1981).

    Article  CAS  Google Scholar 

  16. Jordan, S.R. & Pabo, C.O. Structure of the lambda complex at 2.5 Å resolution: Details of the represser-operator interactions. Science 242, 893–899 (1988).

    Article  CAS  Google Scholar 

  17. Clarke, N.D., Beamer, L.J., Goldberg, H.R., Berkower, C. & Pabo, C.O. The DNA binding arm of λ represser: critical contacts from a flexible region. Science 254, 267–270 (1991).

    Article  CAS  Google Scholar 

  18. Zhang, X-J. & Matthews, B.W. EDPDB: A multi-functional tool for protein structure analysis. J. Appl. Crystallogr. 28, 624–630 (1995).

    Article  CAS  Google Scholar 

  19. Ellenberger, T.E., Brandl, C.J., Struhl, K. & Harrison, S.C. The GCN4 basic region leucine zipper binds DNA as a dimer of uninterrupted α helices: Crystal structure of the protein-DNA complex. Cell 71, 1223–1237 (1992).

    Article  CAS  Google Scholar 

  20. Brennan, R.G. & Matthews, B.W. Structural basis of DNA–protein recognition. Trends Biochem. Sci. 14, 286–290 (1989).

    Article  CAS  Google Scholar 

  21. Harrison, S.C. A structural taxonomy of DNA-binding domains. Nature 353, 715–719 (1991).

    Article  CAS  Google Scholar 

  22. Talanian, R.V., McKnight, C.J. & Kirn, P.S. Sequence-specific DNA binding by a short peptide dimer. Science 249, 769–771 (1990).

    Article  CAS  Google Scholar 

  23. Cuenoud, B. & Schepartz, A. Design of a metallo-bZIP protein that discriminates between CRE and AP1 target sites: Selection against AP1. Proc. Natl. Acad. Sci. USA 90, 1154–1159 (1993).

    Article  CAS  Google Scholar 

  24. Park, C., Campbell, J.L. & Goddard, W.A. III Design and synthesis of a new peptide recognizing a specific 16-base-pair site of DNA. J. Am. Chem. Soc. 117, 6287–6291 (1995).

    Article  CAS  Google Scholar 

  25. Holm, L. & Sander, C. Protein structure comparison by alignment of distance matrices. J. Mol. Biol. 233, 123–138 (1993).

    Article  CAS  Google Scholar 

  26. Breiter, D.R. et al. Molecular structure of an apolipoprotein determined at 2.5A resolution. Biochemistry 30, 603–608 (1991).

    Article  CAS  Google Scholar 

  27. Junius, F., O′Donoghue, S., Nilges, M., Weiss, A. & King, G. High resolution NMR solution structure of the leucine zipper domain of the c-Jun homodimer. J. Biol. Chem. 271, 13663–13667 (1996).

    Article  CAS  Google Scholar 

  28. Andrews, N.C., Erdjument-Bromage, H., Davidson, M.B., Tempst, P. & Orkin, S.H. Erythroid transcription factor NF-E2 is a haematopoietic-specific basic-leucine zipper protein. Nature 362, 722–728 (1993).

    Article  CAS  Google Scholar 

  29. Chan, J.Y., Han, X-L. & Kan, Y.W. Cloning of Nrf1, an NF-E2-related transcription factor, by genetic selection in yeast. Proc. Natl. Acad. Sci. USA 90, 11371–11375 (1993).

    Article  CAS  Google Scholar 

  30. Caterina, J.J., Donze, D., Sun, C-W., Ciavatta, D.J. & Townes, T.M. Cloning and functional characterization of LCR-F1: A bZIP transcription factor that activates erythroid-specific, human globin gene expression. Nucleic Acids Res. 22, 2382–2391 (1994).

    Google Scholar 

  31. Mohler, J., Mahaffey, J.W., Deutsch, E. & Vani, K. Control of Drosophila head segment identity by the bZIP homeotic gene cnc. Development 121, 237–247 (1995).

    CAS  PubMed  Google Scholar 

  32. Shapiro, L. et al. Structural basis of cell-cell adhesion by cadherins. Nature 374, 327–337 (1995).

    Article  CAS  Google Scholar 

  33. Matthews, B.W. Solvent content of protein crystals. J. Mol. Biol. 33, 491–497 (1968).

    Article  CAS  Google Scholar 

  34. French, S. & Wilson, K. On the treatment of negative intensity observations. Acta Crystallogr. A34, 517–525 (1978).

    Article  CAS  Google Scholar 

  35. Otwinowski, Z. Unbiased refinement of heavy atom parameters in the isomorphous replacement method. In Daresbury study weekend proceedings. 80–89 (SERC Daresbury, Daresbury, UK; 1991).

    Google Scholar 

  36. Collaborative Computational Project Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).

  37. McRee, D.E. Practical protein crystallography. (Academic Press, New York; 1993).

    Google Scholar 

  38. Read, R.J. Improved Fourier coefficients for maps using phases from partial structures with errors. Acta Crystallogr. A42, 140–149 (1986).

    Article  CAS  Google Scholar 

  39. Brünger, A.T. Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature 355, 472–475 (1992).

    Article  Google Scholar 

  40. Tronrud, D.E., Ten Eyck, L.F. & Matthews, B.W. An efficient general-purpose least-squares refinement program for macromolecular structures. Acta Crystallogr. A43, 489–503 (1987).

    Article  CAS  Google Scholar 

  41. Tronrud, D.E. Knowledge-based B-factor restraints for the refinement of proteins. J Appl. Crystallogr. 29, 100–104 (1996).

    Article  CAS  Google Scholar 

  42. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK: A program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  43. Brunger, A. Cross-validation in crystallography. Meths Enz. 277B, 366–396 (1997).

    Article  Google Scholar 

  44. Hinnebusch, A.G. Evidence for translational regulation of the activator of general amino acid control in yeast. Proc. Natl. Acad. Sci. USA 81, 6442–6446 (1984).

    Article  CAS  Google Scholar 

  45. Fjose, A., McGinnis, W.J. & Gehring, W.J. Isolation of a homeo box-containing gene from the engrailed region of Drosophila and the spatial distribution of its transcripts. Nature 313, 284–289 (1985).

    Article  CAS  Google Scholar 

  46. Scott, M. et al. The molecular organization of the Antennapedia locus of Drosophila. Cell 35, 763–776 (1983).

    Article  CAS  Google Scholar 

  47. Bohmann, D. et al. Human proto-oncogene c-jun encodes a DNA binding protein with structural and functional properties of transcription factor AP-1. Science 238, 1386–1392 (1987).

    Article  CAS  Google Scholar 

  48. Kraulis, P.J. MOLSCRIPT: A program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  49. Bacon, D.J. & Anderson, W.F. A fast algorithm for rendering space-filling molecule pictures. Mol. Graphics 6, 219–220 (1988).

    Article  Google Scholar 

  50. Merritt, E.A. & Murphy, M.E.P. RasterBd version 2.0 - A program for photorealistic molecular graphics. Acta Crystallogr. D 50, 869–873 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian W. Matthews.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rupert, P., Daughdrill, G., Bowerman, B. et al. A new DNA-binding motif in the Skn-1 binding domain–DNA complex. Nat Struct Mol Biol 5, 484–491 (1998). https://doi.org/10.1038/nsb0698-484

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0698-484

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing