Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Insight
  • Published:

Defining long range order in NMR structure determination from the dependence of heteronuclear relaxation times on rotational diffusion anisotropy

Abstract

Structure determination by NMR presently relies on short range restraints between atoms in close spatial proximity, principally in the form of short (< 5 Å) interproton distances. In the case of modular or multidomain proteins and linear nucleic acids, the density of short interproton distance contacts between structural elements far apart in the sequence may be insufficient to define their relative orientations. In this paper we show how the dependence of heteronuclear longitudinal and transverse relaxation times on the rotational diffusion anisotropy of non-spherical molecules can be readily used to directly provide restraints for simulated annealing structure refinement that characterize long range order a priori. The method is demonstrated using the N-terminal domain of Enzyme I, a protein of 259 residues comprising two distinct domains with a diffusion anisotropy (D/D) of 2.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Wüthrich, K. NMR of Proteins. (Wiley, New York, 1986).

    Google Scholar 

  2. Clore, G.M. & Gronenborn, A.M. Determination of three-dimensional structures of proteins and nucleic acids in solution by nuclear magnetic resonance spectroscopy. CRC Crit. Rev. Biochem. Mot. Biol. 24, 479–564 (1989).

    Article  CAS  Google Scholar 

  3. Bork, K., Downing, A.K., Kieffer, B. & Campbell, I.D. Structure and distribution of modules in extracellular proteins. Q. Rev, Biophys. 29, 119–167 (1996).

    Article  CAS  Google Scholar 

  4. Allerhand, A. et al. Conformation and segmental motion of native and denatured ribonuclease A in solution: application of natural abundance carbon-13 partially relaxed Fourier transform nuclear magnetic resonance. J. Am. Chem. Soc. 93, 544–546 (1971).

    Article  CAS  Google Scholar 

  5. Lipari, G. & Szabo, A. (1982) Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules I: theory and range of validity. J. Am. Chem. Soc. 104, 4546–4559.

    Article  CAS  Google Scholar 

  6. Kay, L.E., Torchia, D.A. & Bax, A. Backbone dynamics of proteins as studied by 15N inverse detected heteronuclear NMR spectroscopy: application to Staphytococcal nuclease. Biochemistry 28, 8972–8979 (1989).

    Article  CAS  Google Scholar 

  7. Clore, G.M., Driscoll, P.C., Wingfield, P.T. & Gronenborn, A.M. Analysis of the backbone dynamics of interleukin-1β using two-dimensional inverse detected 1H-15N NMR spectroscopy. Biochemistry 29, 7387–7401 (1990).

    Article  CAS  Google Scholar 

  8. Torchia, D.A., Nicholson, L.K., Cole, H.B.R. & Kay, L.E. Heteronuclear NMR studies of the molecular dynamics of staphylococcal nuclease. In NMR of Proteins (eds Clore, G.M. & Gronenborn, A.M.) 190–219 (MacMillan Press, London, 1993).

    Google Scholar 

  9. Wagner, G., Hyberts, S. & Peng, J.W. Study of protein dynamics by NMR. In NMR of Proteins (eds., Clore, G.M. & Gronenborn, A.M.) 220–257 (MacMillan Press, London; 1993).

    Google Scholar 

  10. Phan, I.Q.H., Boyd, J. & Campbell, I.D. Dynamic studies of a fibronectin type I module pair at three frequencies: anisotropic modelling and direct determination of conformational exchange. J. Biomol. NMR 8, 369–378 (1996).

    Article  CAS  Google Scholar 

  11. Abragam, A. The Principles of Nuclear Magnetism. Clarendon Press, Oxford (1961).

    Google Scholar 

  12. Woessner, D.E. Nuclear spin relaxation in ellipsoids undergoing rotational Brownian motion. J. Chem. Phys. 36, 647–654 (1962).

    Article  Google Scholar 

  13. Tjandra, N., Feller, S.E., Pastor, R.W. & Bax, A. Rotational diffusion anisotropy of human ubiquitin from 15N NMR relaxation. J. Am. Chem. Soc. 117, 12562–12566 (1995).

    Article  CAS  Google Scholar 

  14. Tjandra, N., Wingfield, P.T., Stahl, S.J. & Bax, A. Anisotropic rotational diffusion of perdeuterated HIV protease from 15N NMR relaxation measurements at two magnetic fields. J. Biomol. NMR 8, 273–284 (1996).

    Article  CAS  Google Scholar 

  15. Nilges, M., Gronenborn, A.M., Brünger, A.T. & Clore, G.M. Determination of three-dimensional structures of proteins by simulated annealing with interproton distance restraints: application to crambin, potato carboxypeptidase inhibitor and bariey serine proteinase inhibitor 2. Protein Eng. 2, 27–38 (1988).

    Article  CAS  Google Scholar 

  16. Liao, D.-I. et al. The first step in sugar transport: crystal structure of the amino-terminal domain of enzyme I of the E. coli PEP:sugar phosphotransferase system and a model of the phosphotransfer complex with HPr. Structure 4, 861–872 (1996).

    Article  CAS  Google Scholar 

  17. Garrett, D.S. et al. Solution structure of the 30 kDa N-terminal domain of enzyme I of the Escherichia coli phosphoenolpyruvate:sugar phosphotransferase system by multidimensional NMR. Biochemistry 36, 2517–2530 (1997).

    Article  CAS  Google Scholar 

  18. Tjandra, N., Grzesiek, S. & Bax, A. Magnetic field dependence of nitrogen-proton J splittings in 15N-enriched human ubiquitin resulting from relaxation interference and residual dipolar coupling. J. Am. Chem. Soc. 118, 6264–6272 (1996).

    Article  CAS  Google Scholar 

  19. MacArthur, M.W. & Thornton, J.M. Deviations from planarity of the peptide bond in peptides and proteins. J. Mol. Biol. 264, 1180–1195 (1996).

    Article  CAS  Google Scholar 

  20. Brüschweller, R., Liao, X. & Wright, P.E. Long-range motional restrictions in a multidomain zinc-finger protein from anisotropic tumbling. Science 268, 886–889 (1995).

    Article  Google Scholar 

  21. Tolman, J.R., Flanagan, J.M., Kennedy, M.A. & Prestegard, J.H. Nuclear magnetic dipole interactions in field-oriented proteins: information for structure determination in solution. Proc. Natl. Acad. Sci. USA 92, 9279–9283 (1995).

    Article  CAS  Google Scholar 

  22. Koradi, R., Billeter, M. & Wüthrich, K. MOLMOL: a program for display and analysis of macromolecular structures.J. Mol. Graphics 14, 52–55 (1996).

    Article  Google Scholar 

  23. Brünger, A.T. XPLOR Manual Version 3.1 (New Haven, Connecticut: Yale University, 1993).

    Google Scholar 

  24. Garrett, D.S., Kuszewski, J., Hancock, T.J., Lodi, P.J., Vuister, G.W., Gronenborn, A.M. & Clore, G.M. The impact of direct refinement against three-bond HN-CαH coupling constants on protein structure determination by NMR. J. Magn. Reson. Series B 104, 99103 (1994).

    Article  Google Scholar 

  25. Kuszewski, J., Qin, J., Gronenborn, A.M. & Clore, G.M. The impact of direct refinement against 13Cα and 13Cβ chemical shifts on protein structure determination by NMR. J. Magn. Reson. Series B 106, 92–96 (1995).

    Article  CAS  Google Scholar 

  26. Kay, L.E., Nicholson, L.K., Delaglio, F., Bax, A. & Torchia, D.A. The effects of cross-correlation between dipolar and chemical shift anisotropy relaxation mechanisms on the measurement of heteronuclear T1 and T2 values in proteins: pulse sequences for the removal of such effects. J. Magn. Reson. 97, 359–375 (1992).

    CAS  Google Scholar 

  27. Peng, J.W., Thanabal, V. & Wagner, G. Improved accuracy of heteronuclear transverse relaxation time measurements in macromolecules: elimination of antiphase contributions. J. Magn. Reson. 95, 421–427 (1991).

    CAS  Google Scholar 

  28. Grzesiek, S. & Bax, A. The importance of not saturating H20 in protein NMR: application to sensitivity enhancement and NOE measurements. J. Am. Chem. Soc. 115, 12593–12594 (1993).

    Article  CAS  Google Scholar 

  29. Brooks, B.R., Bruccoleri, R.E., Olafson, B.D., States, D.J., Swaminathan, S. & Karplus, M. CHARMM: a program for macromolecular energy minimization and dynamics calculations. J. Comput. Chem. 4, 187–217 (1983).

    Article  CAS  Google Scholar 

  30. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Marius Clore.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tjandra, N., Garrett, D., Gronenborn, A. et al. Defining long range order in NMR structure determination from the dependence of heteronuclear relaxation times on rotational diffusion anisotropy. Nat Struct Mol Biol 4, 443–449 (1997). https://doi.org/10.1038/nsb0697-443

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0697-443

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing