Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crystal structure of human mitochondrial single-stranded DNA binding protein at 2.4 Å resolution

Abstract

We solved the crystal structure of the homotetrameric single-stranded DNA binding (SSB) protein from human mitochondria at a resoluntion of 2.4 Å. The tetramer is formed by two dimers interacting head-to-head and shows D2 symmetry. Sequence-related tetrameric SSB proteins occur in prokaryotes and eukaryotic mitochondria; this is the first report of an atomic resolution structure of this type of protein. Using biochemical data and analysis of sequence homologies, we were able to correlate the functional properties with structure. We propose that ssDNA wraps around the tetrameric HsmtSSB protein through electropositive channels guided by flexible loops.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Chase, J.W. & Williams, K.R. Single-stranded DMA binding protein required for DMA replication. Annu. Rev. Biochem. 55, 103–136 (1986).

    Article  CAS  Google Scholar 

  2. Tiranti, V., Rocchi, M., Didonato, S. & Zeviani, M. Cloning of human and rat cDNAs encoding the mitochondrial single-stranded DNA-binding protein (SSB). Gene 126, 219–225 (1993).

    Article  CAS  Google Scholar 

  3. Curth, U., Urbanke, C., Greipel, J., Gerberding, H., Tiranti, V. & Zeviani, M. Single-stranded-DNA-binding proteins from human mitochondria and Escherichia coli have analogous physicochemical properties. Eur. J. Biochem. 221, 435–443 (1994).

    Article  CAS  Google Scholar 

  4. Williams, K.R., Spicer, E.K., Lopresti, M.B., Gugenheimer, R.A. & Chase, J.W. Limited Proteolysis studies on the Escherichia coli Single-stranded DNA binding Protein. J. Biol. Chem. 258, 3346–3355 (1983).

    CAS  PubMed  Google Scholar 

  5. Curth, U., Genschel, J., Urbanke, C. & Greipel, J. In vitro and in vivo function of the C-terminus of Escherichia coli single-stranded DNA binding protein. Nucleic Acids Res. 24, 2706–2711 (1996).

    Article  CAS  Google Scholar 

  6. Thorn, J.M., Carr, P.D., Chase, J.W., Dixon, N.E. & D., Ollis, L. Crystallization and Low Temperature Diffraction Studies of the DNA Binding Domain of Single-stranded DNA Binding Protein from Escherichia coli. J. Mol. Biol. 240, 396–399 (1994).

    Article  CAS  Google Scholar 

  7. Hilgenfeld, R., Saenger, W., Schomburg, U. & Krauss, G. Novel crystal forms of a proteolytic core of the single-stranded DNA binding protein(SSB) from E. Coli. FEBS Letts. 170, 143–146 (1984).

    Article  CAS  Google Scholar 

  8. Curth, U., Bayer, I., Greipel, J., Mayer, F., Urbanke, C. & Maass, G. Amino acid 55 plays a central role in tetramerization and function of Escherichia coli single-stranded DNA binding protein. Eur. J. Biochem. 196, 87–93 (1991).

    Article  CAS  Google Scholar 

  9. Merrill, B.M., Williams, K.R., Chase, J.W. & Konigsberg, W.H. Photochemical Cross-linking of the Escherichia coli Single-stranded DNA binding protein tooligodeoxynucleotides. J. Biol. Chem. 259, 10850–10856 (1984).

    CAS  PubMed  Google Scholar 

  10. Urbanke, C. & Schaper, A. Kinetics of binding of single-stranded DNA binding protein from Escherichia coli to single-stranded nucleic acids. Biochemistry 29, 1744–1749 (1990).

    Article  CAS  Google Scholar 

  11. Lohman, T.M. & Ferrari, M.E. Escherichia coli single-stranded DNA-binding protein: Multiple DNA-Binding modes and coorperativities. Annu. Rev. Biochem. 63, 527–570 (1994).

    Article  CAS  Google Scholar 

  12. Murzin, G.A. OB (oligonucleotide/oligosaccharide binding)–fold: common structural and functional solution for non-homologous sequences. EMBO J. 12, 861–867 (1993).

    Article  CAS  Google Scholar 

  13. Furey, W. & Swanminathan, S. PHASES-95: a program package for the processing and analysis of diffraction data for macromolecules. In Macromolecular Crystallography (eds. C. Carter and R. Sweet; Academic Press, Orlando, FL. 1996) in the press.

    Google Scholar 

  14. Wang, B.C. Resolution of phase ambiguity in macromolecular crystallography.. Meths. Enzymol. 115, 90–112 (1985).

    Article  CAS  Google Scholar 

  15. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for binding protein models in electron desity maps and the location of errors in these models. Acta Crystallogr. A47, 110–119 (1991).

    Article  CAS  Google Scholar 

  16. Brünger, A.T. X-PLOR A system for crystallography and NMR (Version 3.1) Yale University, New Haven, CT 06511 (1992).

    Google Scholar 

  17. Kraulis, P. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  18. Nicholls, A., Sharp, K.A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins Struct. Funct. Genet. 11, 281–296 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, C., Curth, U., Urbanke, C. et al. Crystal structure of human mitochondrial single-stranded DNA binding protein at 2.4 Å resolution. Nat Struct Mol Biol 4, 153–157 (1997). https://doi.org/10.1038/nsb0297-153

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0297-153

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing