Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure of the catalytic domain of human fibroblast collagenase complexed with an inhibitor

Abstract

In rheumatoid and osteoarthritis, degradation of articular cartilage is mediated by the matrix metalloproteinases collagenase, stromelysin and gelatinase. The key event in this process is the cleavage of triple helical collagen by collagenase. We have determined the crystal structure of the catalytic domain of human recombinant fibroblast collagenase complexed with a synthetic inhibitor at 2.2 Å resolution. The protein fold is similar to the amino termini of the zinc endopeptidases astacin thermolysin and elastase despite a lack of primary sequence homology. The conformation of the bound inhibitor provides a molecular basis for the design of inhibitors of collagenase and other matrix metalloproteinases. Such inhibitors should be useful in the treatment of a variety of diseases including arthritis and cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hardingham, T.E., Fosang, A.J. & Dudhia, J. Aggrecan — the chondroitin sulfate keratin sulfate proteoglycan from cartilage. in Articular Cartilage and Osteoarthritis (Eds Kuettner, K. et al. 5–20 (Raven, N.Y., 1992).

    Google Scholar 

  2. Murphy, G.J.P., Murphy, G. & Reynolds, J.J. The origin of matrix metalloproteinases and their familail relationships. FEES Lett. 289, 4–7 (1991).

    Article  CAS  Google Scholar 

  3. Docherty, A.J.P., OConnell, J., Crabbe, T., Angal, S. & Murphy, G. The matrix metalloproteinases and their natural inhibitors—prospects for treating degenerative tissue diseases.. Trends Biotech. 10, 200–207 (1992).

    Article  CAS  Google Scholar 

  4. Johnson, W.H., Roberts, N.A. & Borkakoti, N. Collagenase inhibitors : their design and potential therapeutic use J. Enzyme Inhib. 2, 1–22 (1987).

    Article  CAS  Google Scholar 

  5. Murphy, G., Docherty, A.J.P., Hembry, R.M. & Reynolds, J.J. Metalloproteinases and tissue damage. British J. Rheum. 30(Suppl 1), 25–31 (1991).

    Article  Google Scholar 

  6. Murphy, G., Hembry, R.M., Hughes, C.E., Fosang, A.J. & Hardingham, T.E. Role and regulation of metalloproteinases in connective tissue turnover. Biochem. Soc. Trans. 18, 812–815 (1990).

    Article  CAS  Google Scholar 

  7. Bode, W., Gomis-Ruth, F.X., Huber, R., Zwilling, R. & Stacker, W. Structure of asatcin and implications for activation of astacins and zinc-ligation of collagenase. Nature 358, 164–167 (1992).

    Article  CAS  Google Scholar 

  8. Hunt-Lois, T., Barker, W.C. & Chen, H.R. A domain structure common to hemopexin, vitronectin, interstitial collagenase and a collagenase homolog. Prot. Seq. Data Anal. 1, 21–26 (1987).

    Google Scholar 

  9. Sanchez-Lopez, R., Alexander, C.M., Behrendtsen, O., Behrendtsen, R. & Werb, Z. Role of zinc-binding-encoded and hemopexin domain-encoded sequences in the substrate specificity of collagenase and stromelysin-2 as revealed by chimeric proteins. J. biol. Chem. 268, 7238–7247 (1993).

    CAS  PubMed  Google Scholar 

  10. Clark, I.N. & Cawston, T.E. Fragments of human fibroblast collagenase-purification and characterisation. Biochem. J. 263, 201–206 (1989).

    Article  CAS  Google Scholar 

  11. Windsor, L.J., Birkedal-Hansen, H., Birkedal-Hansen, B. & Engler, J.A. An internal cysteine plays a role in maintenance of the latency of human fibroblast collagenase. Biochemistry 30, 641–647 (1991).

    Article  CAS  Google Scholar 

  12. Lowry, C.L., McGeehan, G. & LeVine, H. Metal ion stabilisation of the conformation of a recombinant 19-kDa catalytic fragment of fibroblast collagenase. Proteins 12, 42–48 (1992).

    Article  CAS  Google Scholar 

  13. Schnierer, S., Kleine, T., Gote, T., Hillemann, A., Knauper, V. & Tschesche, H. The recombinant catalytic domain of human neutrophil collaganase lacks type -I collagen substrate specificity. Biochem. biophy. Res. Comm. 191, 319–326 (1993).

    Article  CAS  Google Scholar 

  14. Gomis-Ruth, F.X., Stacker, W., Huber, R., Zwilling, R. & Bode, W. Refined 1.8 angstrøm x-ray crystal structure of astacin, a zinc-endopeptidase from the crayfish astacus-astacus—structure determination, refinement, molecular-structure and comparison with thermolysin. J. molec. Biol. 229, 945–968 (1993).

    Article  CAS  Google Scholar 

  15. Matthews, B.W., Jansonious, J.N., Colman, P.M., Schoenborn, B.P. & Dupourque, D. Three dimensional structure of thermolysin. Nature 238, 37–41 (1972).

    Article  CAS  Google Scholar 

  16. Thayer, M.M., Flaherty, K.M. & McKay, D.B. Three dimensional structure of pseudomonas-aeruginosa at 1.5 angstrøm resolution. J. molec. Biol. 266, 2864–2871 (1991).

    CAS  Google Scholar 

  17. Vallee, B.L. & Auld, D.S. Zinc coordination function and structure of zinc enzymes and proteins. Biochemistry 29, 5647–5659 (1990).

    Article  CAS  Google Scholar 

  18. Jiang, W. & Bond, J.S. Families of metallopeptidases and their relationships. FEBS Lett. 312, 110–114 (1992).

    Article  CAS  Google Scholar 

  19. Vallee, B.L. & Auld, D.S. Active site zinc ligands and activated waters of zinc enzymes. Proc. natn. Acad. Sci. U.S.A. 87, 220–224 (1990).

    Article  CAS  Google Scholar 

  20. Springman, E.B., Angelton, E.L., Birkedal-Hansen, H. & Van Wart, H. Multiple modes of activation of latent human fibroblast collagenase-evidence for the role of a cys-73 active site zinc complex in latency and a cysteine switch mechanism. Proc. natn. Acad. Sci. U.S.A. 87, 364–368 (1990).

    Article  CAS  Google Scholar 

  21. Monzingo, A.F. & Matthews, B.W. Structure of a mercaptan thermolysin complex illustrates mode of inhibition of zinc proteases by substrate analog mercaptans. Biochemistry 21, 33–90 (1982).

    Article  Google Scholar 

  22. Holden, H.M., Tronrud, D.S., Monzingo, A.F., Weaver, L.H. & Matthews, B.W. Slow-binding and fast-binding inhibitors of thermolysin display different modes of binding—crystallographic analysis of extended phosphonamidate transition state analogs. Biochemistry 26, 8524–8553 (1987).

    Article  Google Scholar 

  23. Kabsch, W. Evaluation of single-crystal X-ray diffraction data from a position sensitive detector. J. appl. Crystallogr. 21, 916–924 (1988).

    Article  CAS  Google Scholar 

  24. Jones, T.A. A graphics model building and refinement system for macromolecules. J. appl. Crystallogr. 11, 268–272 (1978).

    Article  CAS  Google Scholar 

  25. Brunger, A.T., Karplus, M. & Petsko, G.A. Crystallographic refinement by simulated annealing-application to crambin. Acta Crystallogr. 45, 50–61 (1989).

    Article  Google Scholar 

  26. Gerber, P.R. Peptide mechanics-a force field for peptides and proteins working with entire residues as the smallest units. Biopolymers 32, 1003–1017 (1992).

    Article  CAS  Google Scholar 

  27. Collier, I.E. et al. H-ras oncogene-transformed human bronchial epitheliail-cells (tbe-l)secrete a single metalloprotease capable of degrading basement-membrane collagen. J. biol. Chem. 263, 6579–6587 (1988).

    CAS  Google Scholar 

  28. Carson, M. Ribbon models of macromolecules J. molec. Graphics 5, 103–106 (1987).

    Article  CAS  Google Scholar 

  29. Kabsh, W. A solution for the best rotation to relate two sets of vectors. Acta Crystallogr. A32, 922–923 (1976).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borkakoti, N., Winkler, F., Williams, D. et al. Structure of the catalytic domain of human fibroblast collagenase complexed with an inhibitor. Nat Struct Mol Biol 1, 106–110 (1994). https://doi.org/10.1038/nsb0294-106

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0294-106

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing