Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural transitions during activation and ligand binding in hexadecameric Rubisco inferred from the crystal structure of the activated unliganded spinach enzyme

Abstract

Activation of ribulose-1,5-bisphosphate carboxylase oxygenase (Rubisco; EC 4.1.1.39) by CO2 involves carbamylation of Lys 201 and the subsequent binding of a magnesium ion to complete the active site. The refined crystal structure of activated Rubisco shows that the magnesium ligands are Asp 203, Glu 204, the carbamate of Lys 201, and three water molecules. Structural differences between the unactivated and activated forms are minimal. Substrate binding replaces water ligands around the metal and triggers substantial structural changes in loops covering the active site. This leads to a contraction and tightening of the structure of the large subunits with the movements transmitted to and modulated by the small subunits.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Andrews, T.J. & Lorimer, G.H. In The biochemistry of plants. vol 10 (ed. Hatch, M.D.) 121–201 (Academic Press, Orlando, Florida, 1987).

    Google Scholar 

  2. Hartman, F.C. & Harpel, M.R. Structure, function, regulation, and assembly of ribulose-1,5-bisphosphate carboxylase/oxygenase. A. Rev. Biochem. 63, 197–234 (1994).

    Article  CAS  Google Scholar 

  3. Lorimer, G.H., Badger, M.R. & Andrews, T.J. The activation of ribulose-1,5-bisphosphate carboxylase by carbon dioxide and magnesium ions. Equilibria, kinetics, a suggested mechanism, and physiological implications. Biochemistry 15, 529–536 (1976).

    Article  CAS  Google Scholar 

  4. Portis, A.R. Rubisco activase. Biochim. biophys. Acta 1015, 15–28 (1990).

    Article  CAS  Google Scholar 

  5. Schneider, G., Lindqvist, Y. & Lundqvist, T. Crystallographic refinement and structure of ribulose-1,5-bisphosphate carboxylase from Rhodospirillum rubrum at 1. 7 Å resolution. J. molec. Biol. 211, 989–1008 (1990).

    Article  CAS  Google Scholar 

  6. Lundqvist, T. & Schneider, G. Crystal structure of the ternary complex of ribulose-1,5-bisphosphate carboxylase, Mg(ll), and activator CO2 at 2.3 Å resolution. Biochemistry 30, 904–908 (1991).

    Article  CAS  Google Scholar 

  7. Pierce, J., Tolbert, N.E. & Barker, R. Interaction of ribulosebisphosphate carboxylase/oxygenase with transition-state analogues. Biochemistry 19, 934–942 (1980).

    Article  CAS  Google Scholar 

  8. Andersson, I. et al. Crystal structure of the active site of ribulosebisphosphate carboxylase. Nature 337, 229–234 (1989).

    Article  CAS  Google Scholar 

  9. Knight, S., Andersson, I. & Brändén, C.-I. Crystallographic analysis of ribulose 1,5-bisphosphate carboxylase from spinach at 2.4 Å resolution: subunit interactions and the active site. J. molec. Biol. 215, 113–160 (1990).

    Article  CAS  Google Scholar 

  10. Schreuder, H.A. et al. Crystal structure of activated tobacco Rubisco complexed with the reaction-intermediate analogue 2-carboxy-arabinitol 1,5-bisphosphate. Prot. Sci. 2, 1136–1146 (1993).

    Article  CAS  Google Scholar 

  11. Newman, J., Brändén, C.-I. & Jones, A. Structure determination and refinement of ribulose-1,5-bisphosphate carboxylase/oxygenase from Synechococcus PCC6301. Acta Crystallogr. D49, 548–560 (1993).

    CAS  Google Scholar 

  12. Newman, J. & Gutteridge, S., The X-ray structure of Synechococcus ribulose-bisphosphate carboxylase/oxygenase-activated quaternary complex at 2.2 Å resolution. J. biol. Chem. 268, 25876–25886 (1990).

    Google Scholar 

  13. Curmi, P.M., Cascio, D., Sweet, R.M., Eisenberg, D. & Schreuder, H. Crystal structure of the unactivated form of ribulose-1,5-bisphosphate carboxylase oxygenase from tobacco refined at 2.0 Å. J. biol. Chem. 267, 16980–16989 (1992).

    CAS  PubMed  Google Scholar 

  14. Schreuder, H.A. et al. Formation of the active site of ribulose-1,5-bisphosphate carboxylase/oxygenase by a disorder-order transition from the unactivated to the activated form. Proc. natn. Acad. Sci. U.S.A. 90, 9968–9972 (1993).

    Article  CAS  Google Scholar 

  15. Edmondson, D.L., Kane, H.J. & Andrews, T.J. Substrate isomerization inhibits ribulose bisphosphate carboxylase/oxygenase during catalysis. FEBS Lett. 260, 62–66 (1990).

    Article  CAS  Google Scholar 

  16. Andrews, T.J. & Kane, H.J. Pyruvate is a byproduct of catalysis by ribulose bisphosphate carboxylase/oxygenase. J. biol. Chem. 266, 9447–9452 (1991).

    CAS  PubMed  Google Scholar 

  17. Zhu, G. & Jensen, R.G. Fallover of ribulose 1,5-bisphosphate carboxylase/oxygenase activity. Plant Physiol. 97, 1354–1358 (1991).

    Article  CAS  Google Scholar 

  18. Edmondson, D.L., Badger, M.R. & Andrews, T.J. Slow inactivation of ribulose-bisphosphate carboxylase during catalysis is caused by accumulation of a slow, tight-binding inhibitor at the catalytic site. Plant Physiol. 93, 1390–1397.(1990).

    Article  CAS  Google Scholar 

  19. Johal, S., Partridge, B.E. & Chollet, R. Structural characterization and the determination of negative cooperativity in the tight binding of 2-carboxyarabinitol bisphosphate to higher plant ribulose bisphosphate carboxylase. J. biol. Chem. 260, 9894–9904 (1985).

    CAS  PubMed  Google Scholar 

  20. Zhu, G. & Jensen, R.G. Status of the substrate binding sites of ribulose bisphosphate carboxylase as determined with 2-C-carboxyarabinitol 1,5-bisphosphate. Plant Physiol. 93, 244–249 (1990).

    Article  CAS  Google Scholar 

  21. Alber, T. et al. On the three-dimensional structure and catalytic mechanism of triose phosphate isomerase. Phil. Trans. R. Soc. Lond. B293, 159–171 (1981).

    Google Scholar 

  22. Otwinowski, Z. Data Collection and Processing, Proceedings of the CCP4 Study Weekend, 56–62 (Daresbury Laboratory, Warrington, UK 1993).

    Google Scholar 

  23. Brünger, A.T. X-PLOR, version 3.1. Yale University Press, New Haven and London (1992).

    Google Scholar 

  24. Brünger, A.T. The free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature 355, 472–474 (1992).

    Article  Google Scholar 

  25. Engh, R.A. & Huber, R. Accurate bond and angle parameters for X-ray protein structure refinement. Acta Crystallogr. A47, 392–400 (1991).

    Article  CAS  Google Scholar 

  26. Jones, T.A., Zou, J.-Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  27. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK: a program to check the stereochemical quality of protein structures. J. appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  28. Kraulis, P.J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  29. Merritt, E.A. & Murphy, M.E.P., Raster3D Version 2.0, a program for photorealistic molecular graphics. Acta Crystallogr. D50 869–973 (1994).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taylor, T., Andersson, I. Structural transitions during activation and ligand binding in hexadecameric Rubisco inferred from the crystal structure of the activated unliganded spinach enzyme. Nat Struct Mol Biol 3, 95–101 (1996). https://doi.org/10.1038/nsb0196-95

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0196-95

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing